File size: 1,498 Bytes
de3a606
dac08cd
 
 
 
0d85c37
dac08cd
 
 
de3a606
 
dac08cd
 
de3a606
dac08cd
de3a606
0d85c37
dac08cd
0d85c37
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
de3a606
dac08cd
0d85c37
 
 
dac08cd
 
0d85c37
dac08cd
 
 
0d85c37
dac08cd
de3a606
dac08cd
de3a606
dac08cd
 
0d85c37
de3a606
 
dac08cd
de3a606
dac08cd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: coinplusfire_llm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# coinplusfire_llm

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0778

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.891         | 0.99  | 51   | 2.0778          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2