-
Self-Rewarding Language Models
Paper • 2401.10020 • Published • 143 -
Orion-14B: Open-source Multilingual Large Language Models
Paper • 2401.12246 • Published • 11 -
MambaByte: Token-free Selective State Space Model
Paper • 2401.13660 • Published • 50 -
MM-LLMs: Recent Advances in MultiModal Large Language Models
Paper • 2401.13601 • Published • 44
Collections
Discover the best community collections!
Collections including paper arxiv:2409.08239
-
RLHF Workflow: From Reward Modeling to Online RLHF
Paper • 2405.07863 • Published • 67 -
Chameleon: Mixed-Modal Early-Fusion Foundation Models
Paper • 2405.09818 • Published • 126 -
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models
Paper • 2405.15574 • Published • 53 -
An Introduction to Vision-Language Modeling
Paper • 2405.17247 • Published • 85
-
Textbooks Are All You Need
Paper • 2306.11644 • Published • 142 -
Textbooks Are All You Need II: phi-1.5 technical report
Paper • 2309.05463 • Published • 87 -
TinyStories: How Small Can Language Models Be and Still Speak Coherent English?
Paper • 2305.07759 • Published • 33 -
Scaling Synthetic Data Creation with 1,000,000,000 Personas
Paper • 2406.20094 • Published • 94
-
Best Practices and Lessons Learned on Synthetic Data for Language Models
Paper • 2404.07503 • Published • 29 -
Better Synthetic Data by Retrieving and Transforming Existing Datasets
Paper • 2404.14361 • Published • 1 -
Source2Synth: Synthetic Data Generation and Curation Grounded in Real Data Sources
Paper • 2409.08239 • Published • 16