End of training
Browse files
README.md
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama3.1
|
4 |
+
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
5 |
+
tags:
|
6 |
+
- axolotl
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
17 |
+
<details><summary>See axolotl config</summary>
|
18 |
+
|
19 |
+
axolotl version: `0.4.1`
|
20 |
+
```yaml
|
21 |
+
# Configure the base model
|
22 |
+
|
23 |
+
strict: false
|
24 |
+
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
25 |
+
tokenizer_config: meta-llama/Meta-Llama-3.1-8B-Instruct
|
26 |
+
model_type: AutoModelForCausalLM
|
27 |
+
|
28 |
+
|
29 |
+
# Output configuration
|
30 |
+
hub_model_id: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
|
31 |
+
dataset_prepared_path: /workspace/gen_judge/data/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
|
32 |
+
output_dir: /workspace/gen_judge/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
|
33 |
+
|
34 |
+
# Format the dataset into the right instruction format.
|
35 |
+
chat_template: llama3 #llama 3 instruct chat template USE
|
36 |
+
datasets:
|
37 |
+
- path: collinear-ai/prompt-response-eval-classification-dataset-final-axolotl
|
38 |
+
split: without_animal_env_abuse_train
|
39 |
+
type: chat_template
|
40 |
+
chat_template: llama3
|
41 |
+
field_messages: train_conv
|
42 |
+
message_field_role: role
|
43 |
+
message_field_content: content
|
44 |
+
train_on_inputs: false #FALSE
|
45 |
+
|
46 |
+
val_set_size: 0.05
|
47 |
+
# Data packing
|
48 |
+
sequence_len: 2048
|
49 |
+
eval_sample_packing: false
|
50 |
+
sample_packing: false
|
51 |
+
pad_to_sequence_len: true
|
52 |
+
group_by_length: false
|
53 |
+
|
54 |
+
# Lora config
|
55 |
+
adapter: qlora
|
56 |
+
lora_model_dir:
|
57 |
+
load_in_8bit: false
|
58 |
+
load_in_4bit: true
|
59 |
+
lora_r: 64
|
60 |
+
lora_alpha: 32
|
61 |
+
lora_dropout: 0.1
|
62 |
+
lora_target_linear: true
|
63 |
+
lora_fan_in_fan_out:
|
64 |
+
lora_target_modules:
|
65 |
+
- gate_proj
|
66 |
+
- down_proj
|
67 |
+
- up_proj
|
68 |
+
- q_proj
|
69 |
+
- v_proj
|
70 |
+
- k_proj
|
71 |
+
- o_proj
|
72 |
+
lora_modules_to_save:
|
73 |
+
- embed_tokens
|
74 |
+
- lm_head
|
75 |
+
|
76 |
+
# Logging config
|
77 |
+
wandb_project: general-judge-harmfulness-bif-data
|
78 |
+
wandb_entity: nazneen
|
79 |
+
wandb_name: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
|
80 |
+
|
81 |
+
# Trainer config
|
82 |
+
gradient_accumulation_steps: 2
|
83 |
+
micro_batch_size: 12
|
84 |
+
num_epochs: 3
|
85 |
+
optimizer: paged_adamw_8bit
|
86 |
+
lr_scheduler: cosine
|
87 |
+
learning_rate: 0.00005
|
88 |
+
|
89 |
+
bfloat16: true
|
90 |
+
bf16: true
|
91 |
+
fp16:
|
92 |
+
tf32: false
|
93 |
+
|
94 |
+
gradient_checkpointing: true
|
95 |
+
early_stopping_patience:
|
96 |
+
resume_from_checkpoint:
|
97 |
+
local_rank:
|
98 |
+
logging_steps: 10
|
99 |
+
xformers_attention:
|
100 |
+
flash_attention: true
|
101 |
+
save_safetensors: true
|
102 |
+
|
103 |
+
loss_watchdog_threshold: 5.0
|
104 |
+
loss_watchdog_patience: 3
|
105 |
+
|
106 |
+
warmup_steps: 50
|
107 |
+
evals_per_epoch: 3
|
108 |
+
eval_table_size:
|
109 |
+
eval_max_new_tokens: 500
|
110 |
+
saves_per_epoch: 1
|
111 |
+
debug:
|
112 |
+
deepspeed:
|
113 |
+
weight_decay: 0.02
|
114 |
+
fsdp_config:
|
115 |
+
special_tokens:
|
116 |
+
pad_token: "<|end_of_text|>"
|
117 |
+
|
118 |
+
|
119 |
+
## weight decay
|
120 |
+
## add validation set (split add)
|
121 |
+
|
122 |
+
```
|
123 |
+
|
124 |
+
</details><br>
|
125 |
+
|
126 |
+
# harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b
|
127 |
+
|
128 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset.
|
129 |
+
It achieves the following results on the evaluation set:
|
130 |
+
- Loss: 0.1492
|
131 |
+
|
132 |
+
## Model description
|
133 |
+
|
134 |
+
More information needed
|
135 |
+
|
136 |
+
## Intended uses & limitations
|
137 |
+
|
138 |
+
More information needed
|
139 |
+
|
140 |
+
## Training and evaluation data
|
141 |
+
|
142 |
+
More information needed
|
143 |
+
|
144 |
+
## Training procedure
|
145 |
+
|
146 |
+
### Training hyperparameters
|
147 |
+
|
148 |
+
The following hyperparameters were used during training:
|
149 |
+
- learning_rate: 5e-05
|
150 |
+
- train_batch_size: 12
|
151 |
+
- eval_batch_size: 12
|
152 |
+
- seed: 42
|
153 |
+
- distributed_type: multi-GPU
|
154 |
+
- num_devices: 2
|
155 |
+
- gradient_accumulation_steps: 2
|
156 |
+
- total_train_batch_size: 48
|
157 |
+
- total_eval_batch_size: 24
|
158 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
159 |
+
- lr_scheduler_type: cosine
|
160 |
+
- lr_scheduler_warmup_steps: 50
|
161 |
+
- num_epochs: 3
|
162 |
+
|
163 |
+
### Training results
|
164 |
+
|
165 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
166 |
+
|:-------------:|:------:|:----:|:---------------:|
|
167 |
+
| No log | 0.0007 | 1 | 1.8779 |
|
168 |
+
| 0.0152 | 0.3332 | 461 | 0.1341 |
|
169 |
+
| 0.0072 | 0.6664 | 922 | 0.1252 |
|
170 |
+
| 0.0046 | 0.9996 | 1383 | 0.1301 |
|
171 |
+
| 0.0022 | 1.3329 | 1844 | 0.1315 |
|
172 |
+
| 0.0028 | 1.6661 | 2305 | 0.1361 |
|
173 |
+
| 0.0018 | 1.9993 | 2766 | 0.1338 |
|
174 |
+
| 0.0005 | 2.3325 | 3227 | 0.1465 |
|
175 |
+
| 0.0003 | 2.6657 | 3688 | 0.1488 |
|
176 |
+
| 0.0002 | 2.9989 | 4149 | 0.1492 |
|
177 |
+
|
178 |
+
|
179 |
+
### Framework versions
|
180 |
+
|
181 |
+
- PEFT 0.11.1
|
182 |
+
- Transformers 4.45.0
|
183 |
+
- Pytorch 2.1.2+cu118
|
184 |
+
- Datasets 2.19.1
|
185 |
+
- Tokenizers 0.20.3
|