Vasily Alexeev
commited on
Commit
·
0c79aa9
1
Parent(s):
1f3dc6b
add info in readme
Browse files
README.md
CHANGED
@@ -1,5 +1,230 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: other
|
3 |
license_name: llama3
|
4 |
license_link: https://llama.meta.com/llama3/license
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: NousResearch/Meta-Llama-3-70B-Instruct
|
3 |
+
model_type: llama
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
quantized_by: Compressa
|
6 |
license: other
|
7 |
license_name: llama3
|
8 |
license_link: https://llama.meta.com/llama3/license
|
9 |
+
tags:
|
10 |
+
- llama3
|
11 |
+
- omniquant
|
12 |
+
- gptq
|
13 |
+
- triton
|
14 |
---
|
15 |
+
|
16 |
+
|
17 |
+
# Llama 3 70B Instruct – OmniQuant
|
18 |
+
|
19 |
+
Based on [Llama 3 70B Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-70B-Instruct).
|
20 |
+
|
21 |
+
Quantized with [OmniQuant](https://github.com/OpenGVLab/OmniQuant).
|
22 |
+
|
23 |
+
|
24 |
+
## Evaluation
|
25 |
+
|
26 |
+
### PPL (↓)
|
27 |
+
|
28 |
+
| | wiki |
|
29 |
+
| --------- | ---- |
|
30 |
+
| FP | 5,33 |
|
31 |
+
| Quantized | 5,90 |
|
32 |
+
|
33 |
+
|
34 |
+
### Accuracy on English Benchmarks, % (↑)
|
35 |
+
|
36 |
+
| | piqa | arc_easy | arc_challenge | boolq | hellaswag | winogrande |
|
37 |
+
| --------- | ---- | -------- | ------------- | ----- | --------- | ---------- |
|
38 |
+
| FP | 81,5 | 86,2 | 61,9 | 87,4 | 63,7 | 75,8 |
|
39 |
+
| Quantized | 80,7 | 85,8 | 61,4 | 87,0 | 62,7 | 73,0 |
|
40 |
+
|
41 |
+
|
42 |
+
### Summary
|
43 |
+
|
44 |
+
| | Avg acc diff on Eng, % (↑) | Occupied disk space, % (↓) |
|
45 |
+
| ------------- | -------------------------- | -------------------------- |
|
46 |
+
| FP | 0 | 100 |
|
47 |
+
| **Quantized** | \-1,0 | 28,2 |
|
48 |
+
|
49 |
+
|
50 |
+
## Examples
|
51 |
+
|
52 |
+
### Imports and Model Loading
|
53 |
+
|
54 |
+
<details>
|
55 |
+
<summary>Expand</summary>
|
56 |
+
|
57 |
+
```python
|
58 |
+
import gc
|
59 |
+
|
60 |
+
import auto_gptq.nn_modules.qlinear.qlinear_cuda as qlinear_cuda
|
61 |
+
import auto_gptq.nn_modules.qlinear.qlinear_triton as qlinear_triton
|
62 |
+
import torch
|
63 |
+
|
64 |
+
from accelerate import (
|
65 |
+
init_empty_weights,
|
66 |
+
infer_auto_device_map,
|
67 |
+
load_checkpoint_in_model,
|
68 |
+
)
|
69 |
+
from tqdm import tqdm
|
70 |
+
from transformers import (
|
71 |
+
AutoConfig,
|
72 |
+
AutoModelForCausalLM,
|
73 |
+
AutoTokenizer,
|
74 |
+
pipeline,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
def get_named_linears(model):
|
79 |
+
return {
|
80 |
+
name: module for name, module in model.named_modules()
|
81 |
+
if isinstance(module, torch.nn.Linear)
|
82 |
+
}
|
83 |
+
|
84 |
+
|
85 |
+
def set_module(model, name, module):
|
86 |
+
parent = model
|
87 |
+
levels = name.split('.')
|
88 |
+
|
89 |
+
for i in range(len(levels) - 1):
|
90 |
+
cur_name = levels[i]
|
91 |
+
|
92 |
+
if cur_name.isdigit():
|
93 |
+
parent = parent[int(cur_name)]
|
94 |
+
else:
|
95 |
+
parent = getattr(parent, cur_name)
|
96 |
+
|
97 |
+
setattr(parent, levels[-1], module)
|
98 |
+
|
99 |
+
|
100 |
+
def load_model(model_path):
|
101 |
+
# Based on: https://github.com/OpenGVLab/OmniQuant/blob/main/runing_quantized_mixtral_7bx8.ipynb
|
102 |
+
|
103 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
104 |
+
|
105 |
+
if not hasattr(config, 'quantization_config'):
|
106 |
+
raise AttributeError(
|
107 |
+
f'No quantization info found in model config "{model_path}"'
|
108 |
+
f' (`quantization_config` section is missing).'
|
109 |
+
)
|
110 |
+
|
111 |
+
wbits = config.quantization_config['bits']
|
112 |
+
group_size = config.quantization_config['group_size']
|
113 |
+
|
114 |
+
# We are going to init an ordinary model and then manually replace all Linears with QuantLinears
|
115 |
+
del config.quantization_config
|
116 |
+
|
117 |
+
with init_empty_weights():
|
118 |
+
model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch.float16, trust_remote_code=True)
|
119 |
+
|
120 |
+
layers = model.model.layers
|
121 |
+
|
122 |
+
for i in tqdm(range(len(layers))):
|
123 |
+
layer = layers[i]
|
124 |
+
named_linears = get_named_linears(layer)
|
125 |
+
|
126 |
+
for name, module in named_linears.items():
|
127 |
+
params = (
|
128 |
+
wbits, group_size,
|
129 |
+
module.in_features, module.out_features,
|
130 |
+
module.bias is not None
|
131 |
+
)
|
132 |
+
|
133 |
+
if wbits in [2, 4]:
|
134 |
+
q_linear = qlinear_triton.QuantLinear(*params)
|
135 |
+
elif wbits == 3:
|
136 |
+
q_linear = qlinear_cuda.QuantLinear(*params)
|
137 |
+
else:
|
138 |
+
raise NotImplementedError("Only 2, 3 and 4 bits are supported.")
|
139 |
+
|
140 |
+
q_linear.to(next(layer.parameters()).device)
|
141 |
+
set_module(layer, name, q_linear)
|
142 |
+
|
143 |
+
torch.cuda.empty_cache()
|
144 |
+
gc.collect()
|
145 |
+
|
146 |
+
model.tie_weights()
|
147 |
+
device_map = infer_auto_device_map(model)
|
148 |
+
|
149 |
+
print("Loading pre-computed quantized weights...")
|
150 |
+
|
151 |
+
load_checkpoint_in_model(
|
152 |
+
model, checkpoint=model_path,
|
153 |
+
device_map=device_map, offload_state_dict=True,
|
154 |
+
)
|
155 |
+
|
156 |
+
print("Model loaded successfully!")
|
157 |
+
|
158 |
+
return model
|
159 |
+
```
|
160 |
+
</details>
|
161 |
+
|
162 |
+
|
163 |
+
### Inference
|
164 |
+
|
165 |
+
```python
|
166 |
+
model_path = "compressa-ai/Llama-3-70B-Instruct-OmniQuant"
|
167 |
+
|
168 |
+
model = load_model(model_path).cuda()
|
169 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
170 |
+
model_path, use_fast=False, trust_remote_code=True
|
171 |
+
)
|
172 |
+
|
173 |
+
# Llama 3 "specifics"
|
174 |
+
# https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/discussions/4
|
175 |
+
terminators = [
|
176 |
+
tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
|
177 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
178 |
+
]
|
179 |
+
|
180 |
+
system_message = "You are a friendly chatbot who responds as if you are the Sandy Cheeks squirrel from the SpongeBob SquarePants cartoon."
|
181 |
+
user_message = "Do squirrels communicate with birds?"
|
182 |
+
messages = [
|
183 |
+
{"role": "system", "content": system_message},
|
184 |
+
{"role": "user", "content": user_message},
|
185 |
+
]
|
186 |
+
prompt = tokenizer.apply_chat_template(
|
187 |
+
messages, tokenize=False, add_generation_prompt=True
|
188 |
+
)
|
189 |
+
|
190 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
191 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
192 |
+
|
193 |
+
outputs = model.generate(
|
194 |
+
**inputs, max_new_tokens=512,
|
195 |
+
do_sample=True, temperature=0.7, top_p=0.95,
|
196 |
+
eos_token_id=terminators,
|
197 |
+
)
|
198 |
+
|
199 |
+
response = tokenizer.decode(outputs[0])
|
200 |
+
continuation = response.removeprefix(prompt).removesuffix(tokenizer.eos_token)
|
201 |
+
|
202 |
+
print(f'Prompt:\n{prompt}')
|
203 |
+
print(f'Continuation:\n{continuation}\n')
|
204 |
+
```
|
205 |
+
|
206 |
+
|
207 |
+
### Inference Using Pipeline
|
208 |
+
|
209 |
+
```python
|
210 |
+
pipe = pipeline(
|
211 |
+
"text-generation",
|
212 |
+
model=model, tokenizer=tokenizer,
|
213 |
+
eos_token_id=terminators,
|
214 |
+
max_new_tokens=512, do_sample=True,
|
215 |
+
temperature=0.7, top_p=0.95,
|
216 |
+
device=0,
|
217 |
+
)
|
218 |
+
|
219 |
+
prompt = pipe.tokenizer.apply_chat_template(
|
220 |
+
messages, tokenize=False, add_generation_prompt=True
|
221 |
+
)
|
222 |
+
|
223 |
+
outputs = pipe(prompt)
|
224 |
+
|
225 |
+
response = outputs[0]["generated_text"]
|
226 |
+
continuation = response.removeprefix(prompt)
|
227 |
+
|
228 |
+
print(f'Prompt:\n{prompt}')
|
229 |
+
print(f'Continuation:\n{continuation}\n')
|
230 |
+
```
|