File size: 2,086 Bytes
fc59cae d9aa83b fc59cae d9aa83b fc59cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: openai/whisper-tiny
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: whisper-tinyfinacialKI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tinyfinacialKI
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5532
- Wer: 62.9213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.35e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| No log | 0.7519 | 100 | 0.7072 | 71.3483 |
| No log | 1.5038 | 200 | 0.5276 | 51.1236 |
| No log | 2.2556 | 300 | 0.4869 | 47.7528 |
| No log | 3.0075 | 400 | 0.4923 | 43.8202 |
| 0.3216 | 3.7594 | 500 | 0.5228 | 57.3034 |
| 0.3216 | 4.5113 | 600 | 0.5561 | 52.8090 |
| 0.3216 | 5.2632 | 700 | 0.5168 | 55.6180 |
| 0.3216 | 6.0150 | 800 | 0.5289 | 64.0449 |
| 0.3216 | 6.7669 | 900 | 0.5541 | 57.3034 |
| 0.0049 | 7.5188 | 1000 | 0.5548 | 62.3596 |
| 0.0049 | 8.2707 | 1100 | 0.5499 | 63.4831 |
| 0.0049 | 9.0226 | 1200 | 0.5532 | 62.9213 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|