--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true base_model: runwayml/stable-diffusion-v1-5 --- # Text-to-image finetuning - cosmo3769/test This pipeline was finetuned from **runwayml/stable-diffusion-v1-5** on the **your_dataset_name** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['prompt1', 'prompt2', 'prompt3']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("cosmo3769/test", torch_dtype=torch.float16) prompt = "prompt1" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: num_train_epochs * Learning rate: lr * Batch size: batch_size * Gradient accumulation steps: ga_steps * Image resolution: img_resolution * Mixed-precision: boolean ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]