File size: 2,167 Bytes
5486e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
tags:
- ALE/Pong-v5
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: ALE/Pong-v5
type: ALE/Pong-v5
metrics:
- type: mean_reward
value: -21.00 +/- 0.00
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **ALE/Pong-v5**
This is a trained model of a DQN agent playing ALE/Pong-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/Pong_test.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[Pong_test]"
python -m cleanrl_utils.enjoy --exp-name Pong_test --env-id ALE/Pong-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cotran2/Pong_test/raw/main/dqn_atari.py
curl -OL https://huggingface.co/cotran2/Pong_test/raw/main/pyproject.toml
curl -OL https://huggingface.co/cotran2/Pong_test/raw/main/poetry.lock
poetry install --all-extras
python dqn_atari.py --exp-name Pong_test --track --wandb-project-name pong_test --capture-video --env-id ALE/Pong-v5 --total-timesteps 100000 --buffer-size 400000 --save-model True --upload-model True --hf-entity cotran2
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 400000,
'capture_video': True,
'cuda': True,
'end_e': 0.01,
'env_id': 'ALE/Pong-v5',
'exp_name': 'Pong_test',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'cotran2',
'learning_rate': 0.0001,
'learning_starts': 80000,
'num_envs': 1,
'save_model': True,
'seed': 1,
'start_e': 1,
'target_network_frequency': 1000,
'tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 100000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'pong_test'}
```
|