--- tags: - ALE/Pong-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ALE/Pong-v5 type: ALE/Pong-v5 metrics: - type: mean_reward value: -21.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **ALE/Pong-v5** This is a trained model of a DQN agent playing ALE/Pong-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/Pong_test.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[Pong_test]" python -m cleanrl_utils.enjoy --exp-name Pong_test --env-id ALE/Pong-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cotran2/Pong_test/raw/main/dqn_atari.py curl -OL https://huggingface.co/cotran2/Pong_test/raw/main/pyproject.toml curl -OL https://huggingface.co/cotran2/Pong_test/raw/main/poetry.lock poetry install --all-extras python dqn_atari.py --exp-name Pong_test --track --wandb-project-name pong_test --capture-video --env-id ALE/Pong-v5 --total-timesteps 100000 --buffer-size 400000 --save-model True --upload-model True --hf-entity cotran2 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 400000, 'capture_video': True, 'cuda': True, 'end_e': 0.01, 'env_id': 'ALE/Pong-v5', 'exp_name': 'Pong_test', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'cotran2', 'learning_rate': 0.0001, 'learning_starts': 80000, 'num_envs': 1, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 100000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'pong_test'} ```