model: sr: 44100 n_fft: 2048 bandsplits: - - 1000 - 100 - - 4000 - 250 - - 8000 - 500 - - 16000 - 1000 - - 20000 - 2000 bottleneck_layer: rnn t_timesteps: 263 fc_dim: 128 rnn_dim: 256 rnn_type: LSTM bidirectional: true num_layers: 12 mlp_dim: 512 return_mask: false complex_as_channel: true is_mono: false train_dataset: file_dir: /home/mbelmont_rnn/Music-Demixing-with-Band-Split-RNN/datasets/Other txt_dir: files/ txt_path: null target: other is_training: true is_mono: false sr: 44100 preload_dataset: false silent_prob: 0.1 mix_prob: 0.25 mix_tgt_too: false test_dataset: in_fp: /home/mbelmont_rnn/Music-Demixing-with-Band-Split-RNN/datasets/Other target: other is_mono: false sr: 44100 win_size: 3 hop_size: 0.5 batch_size: 4 window: null sad: sr: 44100 window_size_in_sec: 6 overlap_ratio: 0.5 n_chunks_per_segment: 10 eps: 1.0e-05 gamma: 0.001 threshold_max_quantile: 0.15 threshold_segment: 0.5 augmentations: randomcrop: _target_: data.augmentations.RandomCrop p: 1 chunk_size_sec: 3 sr: 44100 window_stft: 2048 hop_stft: 512 gainscale: _target_: data.augmentations.GainScale p: 0.5 min_db: -10.0 max_db: 10.0 featurizer: direct_transform: _target_: torchaudio.transforms.Spectrogram n_fft: 2048 win_length: 2048 hop_length: 512 power: null inverse_transform: _target_: torchaudio.transforms.InverseSpectrogram n_fft: 2048 win_length: 2048 hop_length: 512 callbacks: lr_monitor: _target_: pytorch_lightning.callbacks.LearningRateMonitor logging_interval: epoch model_ckpt: _target_: pytorch_lightning.callbacks.ModelCheckpoint monitor: train/loss mode: min save_top_k: 5 dirpath: /home/mbelmont_rnn/Music-Demixing-with-Band-Split-RNN/src/logs/bandsplitrnn/2023-04-29_14-46/weights filename: epoch{epoch:02d}-train_loss{train/loss:.2f} auto_insert_metric_name: false model_ckpt_usdr: _target_: pytorch_lightning.callbacks.ModelCheckpoint monitor: train/usdr mode: max save_top_k: 5 dirpath: /home/mbelmont_rnn/Music-Demixing-with-Band-Split-RNN/src/logs/bandsplitrnn/2023-04-29_14-46/weights filename: epoch{epoch:02d}-train_usdr{train/usdr:.2f} auto_insert_metric_name: false ema: _target_: utils.callbacks.EMA decay: 0.9999 validate_original_weights: false every_n_steps: 1 logger: tensorboard: _target_: pytorch_lightning.loggers.TensorBoardLogger save_dir: /home/mbelmont_rnn/Music-Demixing-with-Band-Split-RNN/src/logs/bandsplitrnn/2023-04-29_14-46/tb_logs name: '' version: '' log_graph: false default_hp_metric: false prefix: '' wandb: _target_: pytorch_lightning.loggers.WandbLogger project: MDX_BSRNN_23 name: other save_dir: wandb_logs offline: false id: null log_model: false prefix: '' job_type: train group: '' tags: [] train_loader: batch_size: 8 num_workers: 12 shuffle: true drop_last: true val_loader: batch_size: 2 num_workers: 8 shuffle: false drop_last: false opt: _target_: torch.optim.Adam lr: 0.001 sch: warmup_step: 10 alpha: 0.1 gamma: 0.9899494936611665 ckpt_path: logs/bandsplitrnn/2023-04-28_22-39/weights/epoch215-train_usdr5.49.ckpt trainer: fast_dev_run: false min_epochs: 100 max_epochs: 500 log_every_n_steps: 10 accelerator: auto devices: auto gradient_clip_val: 5 precision: 32 enable_progress_bar: true benchmark: true deterministic: false experiment_dirname: bandsplitrnn wandb_api_key: d5c4447e39b2b10b95f05f907d57845ded16bc13