venkyyuvy commited on
Commit
cb57fa9
·
verified ·
1 Parent(s): b2cfda5

fix with actual model name

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -14,8 +14,8 @@ The model can be used for Information Retrieval: Given a query, encode the query
14
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
15
  import torch
16
 
17
- model = AutoModelForSequenceClassification.from_pretrained('model_name')
18
- tokenizer = AutoTokenizer.from_pretrained('model_name')
19
 
20
  features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
21
 
@@ -31,7 +31,7 @@ with torch.no_grad():
31
  The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
32
  ```python
33
  from sentence_transformers import CrossEncoder
34
- model = CrossEncoder('model_name', max_length=512)
35
  scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
36
  ```
37
 
 
14
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
15
  import torch
16
 
17
+ model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
18
+ tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
19
 
20
  features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
21
 
 
31
  The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
32
  ```python
33
  from sentence_transformers import CrossEncoder
34
+ model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
35
  scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
36
  ```
37