Upload stable_inversion.ipynb
Browse files- stable_inversion.ipynb +1714 -0
stable_inversion.ipynb
ADDED
@@ -0,0 +1,1714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"source": [
|
6 |
+
"# Trinket! Stable Inversion\n",
|
7 |
+
"A cheap alternative to finetuning stable diffusion, by [crumb](https://twitter.com/aicrumb)\n",
|
8 |
+
"\n",
|
9 |
+
"Finetunes the embedding layer like Textual-Inversion does, but on CLIP Text/Image pairs instead of reconstruction loss from Stable Diffusion. Lower memory requirements + (sometimes) faster than finetuning the traditional way."
|
10 |
+
],
|
11 |
+
"metadata": {
|
12 |
+
"id": "mSXDq5-qTSF6"
|
13 |
+
},
|
14 |
+
"id": "mSXDq5-qTSF6"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"source": [
|
19 |
+
"!pip install git+https://github.com/openai/CLIP -q\n",
|
20 |
+
"!pip install bitsandbytes -q"
|
21 |
+
],
|
22 |
+
"metadata": {
|
23 |
+
"id": "yB-XeS51NmI2"
|
24 |
+
},
|
25 |
+
"id": "yB-XeS51NmI2",
|
26 |
+
"execution_count": 1,
|
27 |
+
"outputs": []
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"source": [
|
32 |
+
"import bitsandbytes as bnb\n",
|
33 |
+
"import torchvision\n",
|
34 |
+
"from torchvision import transforms\n",
|
35 |
+
"from tqdm.auto import *\n",
|
36 |
+
"from torch import nn, optim\n",
|
37 |
+
"from torch.nn import functional as F\n",
|
38 |
+
"from PIL import Image\n",
|
39 |
+
"import requests\n",
|
40 |
+
"from io import BytesIO\n",
|
41 |
+
"import torch\n",
|
42 |
+
"import random\n",
|
43 |
+
"import clip\n",
|
44 |
+
"import pandas as pd"
|
45 |
+
],
|
46 |
+
"metadata": {
|
47 |
+
"id": "x1OogszooEi6",
|
48 |
+
"colab": {
|
49 |
+
"base_uri": "https://localhost:8080/"
|
50 |
+
},
|
51 |
+
"outputId": "a55a628d-aafc-407e-a2a9-fb03b8a0896a"
|
52 |
+
},
|
53 |
+
"id": "x1OogszooEi6",
|
54 |
+
"execution_count": 2,
|
55 |
+
"outputs": [
|
56 |
+
{
|
57 |
+
"output_type": "stream",
|
58 |
+
"name": "stdout",
|
59 |
+
"text": [
|
60 |
+
"\n",
|
61 |
+
"===================================BUG REPORT===================================\n",
|
62 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
63 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
64 |
+
"================================================================================\n",
|
65 |
+
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...\n",
|
66 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
67 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
68 |
+
"CUDA SETUP: Detected CUDA version 111\n",
|
69 |
+
"CUDA SETUP: Loading binary /usr/local/lib/python3.7/dist-packages/bitsandbytes/libbitsandbytes_cuda111.so...\n"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"output_type": "stream",
|
74 |
+
"name": "stderr",
|
75 |
+
"text": [
|
76 |
+
"/usr/local/lib/python3.7/dist-packages/bitsandbytes/cuda_setup/paths.py:99: UserWarning: /usr/lib64-nvidia did not contain libcudart.so as expected! Searching further paths...\n",
|
77 |
+
" f'{candidate_env_vars[\"LD_LIBRARY_PATH\"]} did not contain '\n",
|
78 |
+
"/usr/local/lib/python3.7/dist-packages/bitsandbytes/cuda_setup/paths.py:21: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('{\"kernelManagerProxyPort\"'), PosixPath('\"/usr/local/bin/dap_multiplexer\",\"enableLsp\"'), PosixPath('\"172.28.0.3\",\"jupyterArgs\"'), PosixPath('[\"--ip=172.28.0.2\"],\"debugAdapterMultiplexerPath\"'), PosixPath('true}'), PosixPath('6000,\"kernelManagerProxyHost\"')}\n",
|
79 |
+
" \"WARNING: The following directories listed in your path were found to \"\n",
|
80 |
+
"/usr/local/lib/python3.7/dist-packages/bitsandbytes/cuda_setup/paths.py:21: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/env/python')}\n",
|
81 |
+
" \"WARNING: The following directories listed in your path were found to \"\n",
|
82 |
+
"/usr/local/lib/python3.7/dist-packages/bitsandbytes/cuda_setup/paths.py:21: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//ipykernel.pylab.backend_inline')}\n",
|
83 |
+
" \"WARNING: The following directories listed in your path were found to \"\n"
|
84 |
+
]
|
85 |
+
}
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 3,
|
91 |
+
"id": "22b6861e-289f-4779-bbf1-40bfd1327823",
|
92 |
+
"metadata": {
|
93 |
+
"colab": {
|
94 |
+
"base_uri": "https://localhost:8080/"
|
95 |
+
},
|
96 |
+
"id": "22b6861e-289f-4779-bbf1-40bfd1327823",
|
97 |
+
"outputId": "fd96d25d-8cbf-43d2-8d5b-983856bf2a3a"
|
98 |
+
},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"output_type": "stream",
|
102 |
+
"name": "stdout",
|
103 |
+
"text": [
|
104 |
+
"Loaded CLIP\n"
|
105 |
+
]
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"# the stable diffusion model uses L/14 by default\n",
|
110 |
+
"clip_model, _ = clip.load(\"ViT-L/14\", jit=False)\n",
|
111 |
+
"clip_model = clip_model.cuda()\n",
|
112 |
+
"print(\"Loaded CLIP\")"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 4,
|
118 |
+
"id": "eaa9bde8-3fdd-48df-aa36-8b88cec285be",
|
119 |
+
"metadata": {
|
120 |
+
"id": "eaa9bde8-3fdd-48df-aa36-8b88cec285be"
|
121 |
+
},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"bs = 16 # need a large batch size for the contrastive loss to work properly\n",
|
125 |
+
"steps = 64\n",
|
126 |
+
"epochs = 4\n",
|
127 |
+
"lr = 1e-3"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 5,
|
133 |
+
"id": "0667d187-2c3e-40b8-a2fd-b408d5f144c5",
|
134 |
+
"metadata": {
|
135 |
+
"colab": {
|
136 |
+
"base_uri": "https://localhost:8080/",
|
137 |
+
"height": 206
|
138 |
+
},
|
139 |
+
"id": "0667d187-2c3e-40b8-a2fd-b408d5f144c5",
|
140 |
+
"outputId": "b8f6056a-c2ac-4b89-e222-0d47705617e9"
|
141 |
+
},
|
142 |
+
"outputs": [
|
143 |
+
{
|
144 |
+
"output_type": "execute_result",
|
145 |
+
"data": {
|
146 |
+
"text/plain": [
|
147 |
+
" Unnamed: 0 url \\\n",
|
148 |
+
"0 0 https://cdn.donmai.us/original/51/bb/51bb44d69... \n",
|
149 |
+
"1 1 https://cdn.donmai.us/original/4f/8e/4f8e5eaba... \n",
|
150 |
+
"2 2 https://cdn.donmai.us/original/c8/54/c85428d89... \n",
|
151 |
+
"3 3 https://cdn.donmai.us/original/e9/fc/e9fcc788e... \n",
|
152 |
+
"4 4 https://cdn.donmai.us/original/8a/63/8a639d21b... \n",
|
153 |
+
"\n",
|
154 |
+
" prompt \n",
|
155 |
+
"0 genshin_impact boo_tao_(genshin_impact) hu_tao... \n",
|
156 |
+
"1 genshin_impact arlecchino_(genshin_impact) cap... \n",
|
157 |
+
"2 genshin_impact fischl_(ein_immernachtstraum)_(... \n",
|
158 |
+
"3 genshin_impact eula_(genshin_impact) 1girl :o ... \n",
|
159 |
+
"4 genshin_impact kuki_shinobu 1girl breasts brid... "
|
160 |
+
],
|
161 |
+
"text/html": [
|
162 |
+
"\n",
|
163 |
+
" <div id=\"df-b1359ba3-d298-4260-9864-de09e0a61fd0\">\n",
|
164 |
+
" <div class=\"colab-df-container\">\n",
|
165 |
+
" <div>\n",
|
166 |
+
"<style scoped>\n",
|
167 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
168 |
+
" vertical-align: middle;\n",
|
169 |
+
" }\n",
|
170 |
+
"\n",
|
171 |
+
" .dataframe tbody tr th {\n",
|
172 |
+
" vertical-align: top;\n",
|
173 |
+
" }\n",
|
174 |
+
"\n",
|
175 |
+
" .dataframe thead th {\n",
|
176 |
+
" text-align: right;\n",
|
177 |
+
" }\n",
|
178 |
+
"</style>\n",
|
179 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
180 |
+
" <thead>\n",
|
181 |
+
" <tr style=\"text-align: right;\">\n",
|
182 |
+
" <th></th>\n",
|
183 |
+
" <th>Unnamed: 0</th>\n",
|
184 |
+
" <th>url</th>\n",
|
185 |
+
" <th>prompt</th>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" </thead>\n",
|
188 |
+
" <tbody>\n",
|
189 |
+
" <tr>\n",
|
190 |
+
" <th>0</th>\n",
|
191 |
+
" <td>0</td>\n",
|
192 |
+
" <td>https://cdn.donmai.us/original/51/bb/51bb44d69...</td>\n",
|
193 |
+
" <td>genshin_impact boo_tao_(genshin_impact) hu_tao...</td>\n",
|
194 |
+
" </tr>\n",
|
195 |
+
" <tr>\n",
|
196 |
+
" <th>1</th>\n",
|
197 |
+
" <td>1</td>\n",
|
198 |
+
" <td>https://cdn.donmai.us/original/4f/8e/4f8e5eaba...</td>\n",
|
199 |
+
" <td>genshin_impact arlecchino_(genshin_impact) cap...</td>\n",
|
200 |
+
" </tr>\n",
|
201 |
+
" <tr>\n",
|
202 |
+
" <th>2</th>\n",
|
203 |
+
" <td>2</td>\n",
|
204 |
+
" <td>https://cdn.donmai.us/original/c8/54/c85428d89...</td>\n",
|
205 |
+
" <td>genshin_impact fischl_(ein_immernachtstraum)_(...</td>\n",
|
206 |
+
" </tr>\n",
|
207 |
+
" <tr>\n",
|
208 |
+
" <th>3</th>\n",
|
209 |
+
" <td>3</td>\n",
|
210 |
+
" <td>https://cdn.donmai.us/original/e9/fc/e9fcc788e...</td>\n",
|
211 |
+
" <td>genshin_impact eula_(genshin_impact) 1girl :o ...</td>\n",
|
212 |
+
" </tr>\n",
|
213 |
+
" <tr>\n",
|
214 |
+
" <th>4</th>\n",
|
215 |
+
" <td>4</td>\n",
|
216 |
+
" <td>https://cdn.donmai.us/original/8a/63/8a639d21b...</td>\n",
|
217 |
+
" <td>genshin_impact kuki_shinobu 1girl breasts brid...</td>\n",
|
218 |
+
" </tr>\n",
|
219 |
+
" </tbody>\n",
|
220 |
+
"</table>\n",
|
221 |
+
"</div>\n",
|
222 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b1359ba3-d298-4260-9864-de09e0a61fd0')\"\n",
|
223 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
224 |
+
" style=\"display:none;\">\n",
|
225 |
+
" \n",
|
226 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
227 |
+
" width=\"24px\">\n",
|
228 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
229 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
230 |
+
" </svg>\n",
|
231 |
+
" </button>\n",
|
232 |
+
" \n",
|
233 |
+
" <style>\n",
|
234 |
+
" .colab-df-container {\n",
|
235 |
+
" display:flex;\n",
|
236 |
+
" flex-wrap:wrap;\n",
|
237 |
+
" gap: 12px;\n",
|
238 |
+
" }\n",
|
239 |
+
"\n",
|
240 |
+
" .colab-df-convert {\n",
|
241 |
+
" background-color: #E8F0FE;\n",
|
242 |
+
" border: none;\n",
|
243 |
+
" border-radius: 50%;\n",
|
244 |
+
" cursor: pointer;\n",
|
245 |
+
" display: none;\n",
|
246 |
+
" fill: #1967D2;\n",
|
247 |
+
" height: 32px;\n",
|
248 |
+
" padding: 0 0 0 0;\n",
|
249 |
+
" width: 32px;\n",
|
250 |
+
" }\n",
|
251 |
+
"\n",
|
252 |
+
" .colab-df-convert:hover {\n",
|
253 |
+
" background-color: #E2EBFA;\n",
|
254 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
255 |
+
" fill: #174EA6;\n",
|
256 |
+
" }\n",
|
257 |
+
"\n",
|
258 |
+
" [theme=dark] .colab-df-convert {\n",
|
259 |
+
" background-color: #3B4455;\n",
|
260 |
+
" fill: #D2E3FC;\n",
|
261 |
+
" }\n",
|
262 |
+
"\n",
|
263 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
264 |
+
" background-color: #434B5C;\n",
|
265 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
266 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
267 |
+
" fill: #FFFFFF;\n",
|
268 |
+
" }\n",
|
269 |
+
" </style>\n",
|
270 |
+
"\n",
|
271 |
+
" <script>\n",
|
272 |
+
" const buttonEl =\n",
|
273 |
+
" document.querySelector('#df-b1359ba3-d298-4260-9864-de09e0a61fd0 button.colab-df-convert');\n",
|
274 |
+
" buttonEl.style.display =\n",
|
275 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
276 |
+
"\n",
|
277 |
+
" async function convertToInteractive(key) {\n",
|
278 |
+
" const element = document.querySelector('#df-b1359ba3-d298-4260-9864-de09e0a61fd0');\n",
|
279 |
+
" const dataTable =\n",
|
280 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
281 |
+
" [key], {});\n",
|
282 |
+
" if (!dataTable) return;\n",
|
283 |
+
"\n",
|
284 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
285 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
286 |
+
" + ' to learn more about interactive tables.';\n",
|
287 |
+
" element.innerHTML = '';\n",
|
288 |
+
" dataTable['output_type'] = 'display_data';\n",
|
289 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
290 |
+
" const docLink = document.createElement('div');\n",
|
291 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
292 |
+
" element.appendChild(docLink);\n",
|
293 |
+
" }\n",
|
294 |
+
" </script>\n",
|
295 |
+
" </div>\n",
|
296 |
+
" </div>\n",
|
297 |
+
" "
|
298 |
+
]
|
299 |
+
},
|
300 |
+
"metadata": {},
|
301 |
+
"execution_count": 5
|
302 |
+
}
|
303 |
+
],
|
304 |
+
"source": [
|
305 |
+
"# ultimately you just need >1000 prompt+url pairs in lists named prompts and urls, however you load it is fine\n",
|
306 |
+
"# this is how i scraped them so this is how i load them\n",
|
307 |
+
"# you can scrape danbooru/safebooru/others with pybooru with this script from waifu-diffusion https://github.com/harubaru/waifu-diffusion/blob/main/danbooru_data/scrape.py\n",
|
308 |
+
"df = pd.read_csv(\"/content/genshin.csv\")\n",
|
309 |
+
"prompts = df['prompt']#[:steps*bs]\n",
|
310 |
+
"urls = df['url']#[:steps*bs\n",
|
311 |
+
"df.head()"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"source": [
|
317 |
+
"print(len(prompts))"
|
318 |
+
],
|
319 |
+
"metadata": {
|
320 |
+
"colab": {
|
321 |
+
"base_uri": "https://localhost:8080/"
|
322 |
+
},
|
323 |
+
"id": "6lYQYqKEZKhv",
|
324 |
+
"outputId": "7d26b946-ce1e-41ed-abaf-a4efed5d02cc"
|
325 |
+
},
|
326 |
+
"id": "6lYQYqKEZKhv",
|
327 |
+
"execution_count": 6,
|
328 |
+
"outputs": [
|
329 |
+
{
|
330 |
+
"output_type": "stream",
|
331 |
+
"name": "stdout",
|
332 |
+
"text": [
|
333 |
+
"1200\n"
|
334 |
+
]
|
335 |
+
}
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": 7,
|
341 |
+
"id": "12fce080-73f3-430f-ba2c-99f265316b66",
|
342 |
+
"metadata": {
|
343 |
+
"id": "12fce080-73f3-430f-ba2c-99f265316b66"
|
344 |
+
},
|
345 |
+
"outputs": [],
|
346 |
+
"source": [
|
347 |
+
"clip_model.token_embedding.weight.requires_grad = True\n",
|
348 |
+
"# opt = optim.Adam([clip_model.token_embedding.weight], lr)\n",
|
349 |
+
"opt = bnb.optim.AdamW8bit([clip_model.token_embedding.weight], lr)"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 8,
|
355 |
+
"id": "9a4b1696-a8d9-4eea-a8e0-ba372d450619",
|
356 |
+
"metadata": {
|
357 |
+
"id": "9a4b1696-a8d9-4eea-a8e0-ba372d450619"
|
358 |
+
},
|
359 |
+
"outputs": [],
|
360 |
+
"source": [
|
361 |
+
"# functions from another project of mine that's a bit messy\n",
|
362 |
+
"def fix_to_224(pil_image):\n",
|
363 |
+
" width, height = pil_image.size\n",
|
364 |
+
" if width < height:\n",
|
365 |
+
" new_width = 224\n",
|
366 |
+
" new_height = int(new_width * height / width)\n",
|
367 |
+
" else:\n",
|
368 |
+
" new_height = 224\n",
|
369 |
+
" new_width = int(new_height * width / height)\n",
|
370 |
+
" return pil_image.resize((new_width, new_height))\n",
|
371 |
+
"def to_tensor_and_center_crop(pil_image):\n",
|
372 |
+
" tensor = torchvision.transforms.functional.to_tensor(pil_image)\n",
|
373 |
+
" center_crop = torchvision.transforms.functional.center_crop(tensor, (224, 224))\n",
|
374 |
+
" return center_crop\n",
|
375 |
+
"def fix(img):\n",
|
376 |
+
" return to_tensor_and_center_crop(fix_to_224(img))\n",
|
377 |
+
"\n",
|
378 |
+
"iter_prompts = iter(prompts)\n",
|
379 |
+
"iter_urls = iter(urls)\n",
|
380 |
+
"def get_batch(size=8, step=1, steps_per_epoch=128, epoch=1, total_epochs=1):\n",
|
381 |
+
" to_tensor = transforms.ToTensor()\n",
|
382 |
+
" x = []\n",
|
383 |
+
" y = []\n",
|
384 |
+
" total_steps = total_epochs*steps_per_epoch\n",
|
385 |
+
" current_fraction = (epoch*steps_per_epoch-steps_per_epoch+step) / total_steps\n",
|
386 |
+
"\n",
|
387 |
+
" while len(x) < size:\n",
|
388 |
+
" # uncomment these and space the big block right one tab\n",
|
389 |
+
" # if you're using a set that might have dead urls\n",
|
390 |
+
" try:\n",
|
391 |
+
" url = next(iter_urls)\n",
|
392 |
+
" response = requests.get(url)\n",
|
393 |
+
" img = Image.open(BytesIO(response.content))\n",
|
394 |
+
" img = img.convert(\"RGB\")\n",
|
395 |
+
" img = fix(img)\n",
|
396 |
+
" x.append(img.unsqueeze(0))\n",
|
397 |
+
"\n",
|
398 |
+
" p = next(iter_prompts)\n",
|
399 |
+
"\n",
|
400 |
+
" # comment out these lines if you aren't using danbooru tags\n",
|
401 |
+
" p = p.split(\" \")\n",
|
402 |
+
" if current_fraction < 0.75: random.shuffle(p)\n",
|
403 |
+
" if current_fraction > 0.5: # halfway through training, start dropping half of the tags\n",
|
404 |
+
" p = p[:len(p)//2]\n",
|
405 |
+
" if current_fraction > 0.75: # 3/4 through training, start dropping 3/4 of the tags\n",
|
406 |
+
" p = p[:4]\n",
|
407 |
+
" p = \" \".join(p)\n",
|
408 |
+
" y.append(p)\n",
|
409 |
+
" except KeyboardInterrupt:\n",
|
410 |
+
" print('Interrupted')\n",
|
411 |
+
" break\n",
|
412 |
+
" except:\n",
|
413 |
+
" pass\n",
|
414 |
+
" \n",
|
415 |
+
" x = torch.cat(x, 0)\n",
|
416 |
+
" x = clip_model.encode_image(x.cuda())\n",
|
417 |
+
" \n",
|
418 |
+
" y = clip.tokenize(y, truncate=True)\n",
|
419 |
+
" y = clip_model.encode_text(y.cuda())\n",
|
420 |
+
" return x, y"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "code",
|
425 |
+
"execution_count": null,
|
426 |
+
"id": "203637dd-441e-4b43-944d-48ffa126e826",
|
427 |
+
"metadata": {
|
428 |
+
"colab": {
|
429 |
+
"base_uri": "https://localhost:8080/",
|
430 |
+
"height": 182,
|
431 |
+
"referenced_widgets": [
|
432 |
+
"cfab11c900c44070b2dc032034b9a65d",
|
433 |
+
"edf50d7b6e8b475abd9e1ebae7778aba",
|
434 |
+
"af697a5f975c405190c54d2a349b551c",
|
435 |
+
"1953f85f00e04cb4bb95acadbb589b12",
|
436 |
+
"d28248f12d834263a1605afed777077a",
|
437 |
+
"1b255d9b51cb4dee82e1d14a506bf85e",
|
438 |
+
"effd6703ac904650a7c02fbac19d1ce9",
|
439 |
+
"f62a8b3dfedd4500b795e8a9e57ee4e1",
|
440 |
+
"c2669c5874354798b33d7da9a5d8084d",
|
441 |
+
"6b085d5276bf42c8b8e6a050de4730c9",
|
442 |
+
"47347341d5a14564a25e52179187b218",
|
443 |
+
"39487ee2262647a79ed05bd89413ec25",
|
444 |
+
"37fd57a2be584e37aade4f200aca564e",
|
445 |
+
"2daa2d8768f94963b4be13ee5108ec16",
|
446 |
+
"41d52c3d2db543ac8654f2d79ea72f51",
|
447 |
+
"cee7cfd5a46a4a86a048e84c9aa6df56",
|
448 |
+
"365846f3939d49188dd2698ccb4a0c6d",
|
449 |
+
"fa8cd1c1559248aeb8a920d6a1f7b8ca",
|
450 |
+
"8d6f469af323498aae3b8c2fd2e4f7de",
|
451 |
+
"a58aa5c526234c25bd330564a8631310",
|
452 |
+
"355e7a4bac0f41d1a0a7aba831c1916b",
|
453 |
+
"d8d127599a964af2b22957e7cadc3949",
|
454 |
+
"94c994a72e6e47a581ef47eafc4f8621",
|
455 |
+
"e2409e281b874665bbe830fc5843e4fe",
|
456 |
+
"c980cbb0b5ba43378c84ea122829e70e",
|
457 |
+
"08ab7aae4ac341909798caf190c84ada",
|
458 |
+
"9decfef2a41f42f0a3b77dfaa3a02bac",
|
459 |
+
"a0f24920a480438381da74562a7f7df1",
|
460 |
+
"bc4723c3d801406b891f808c84e9e83b",
|
461 |
+
"c464d7549104481a90f75f3e5b219189",
|
462 |
+
"d9792cd6d5034352a3a9f2122bb5d9c0",
|
463 |
+
"8a9c974907c74fe29b6a323df7df0d4d",
|
464 |
+
"40ae1be859d74847b4f0944c4027e1cf"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
"id": "203637dd-441e-4b43-944d-48ffa126e826",
|
468 |
+
"outputId": "4ea5f3da-86fa-4910-d919-fc1ef0d8f007"
|
469 |
+
},
|
470 |
+
"outputs": [
|
471 |
+
{
|
472 |
+
"output_type": "display_data",
|
473 |
+
"data": {
|
474 |
+
"text/plain": [
|
475 |
+
" 0%| | 0/4 [00:00<?, ?it/s]"
|
476 |
+
],
|
477 |
+
"application/vnd.jupyter.widget-view+json": {
|
478 |
+
"version_major": 2,
|
479 |
+
"version_minor": 0,
|
480 |
+
"model_id": "cfab11c900c44070b2dc032034b9a65d"
|
481 |
+
}
|
482 |
+
},
|
483 |
+
"metadata": {}
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"output_type": "display_data",
|
487 |
+
"data": {
|
488 |
+
"text/plain": [
|
489 |
+
" 0%| | 0/64 [00:00<?, ?it/s]"
|
490 |
+
],
|
491 |
+
"application/vnd.jupyter.widget-view+json": {
|
492 |
+
"version_major": 2,
|
493 |
+
"version_minor": 0,
|
494 |
+
"model_id": "39487ee2262647a79ed05bd89413ec25"
|
495 |
+
}
|
496 |
+
},
|
497 |
+
"metadata": {}
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"output_type": "stream",
|
501 |
+
"name": "stderr",
|
502 |
+
"text": [
|
503 |
+
"/usr/local/lib/python3.7/dist-packages/PIL/Image.py:960: UserWarning: Palette images with Transparency expressed in bytes should be converted to RGBA images\n",
|
504 |
+
" \"Palette images with Transparency expressed in bytes should be \"\n",
|
505 |
+
"/usr/local/lib/python3.7/dist-packages/PIL/TiffImagePlugin.py:788: UserWarning: Corrupt EXIF data. Expecting to read 4 bytes but only got 0. \n",
|
506 |
+
" warnings.warn(str(msg))\n"
|
507 |
+
]
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"output_type": "display_data",
|
511 |
+
"data": {
|
512 |
+
"text/plain": [
|
513 |
+
" 0%| | 0/64 [00:00<?, ?it/s]"
|
514 |
+
],
|
515 |
+
"application/vnd.jupyter.widget-view+json": {
|
516 |
+
"version_major": 2,
|
517 |
+
"version_minor": 0,
|
518 |
+
"model_id": "94c994a72e6e47a581ef47eafc4f8621"
|
519 |
+
}
|
520 |
+
},
|
521 |
+
"metadata": {}
|
522 |
+
}
|
523 |
+
],
|
524 |
+
"source": [
|
525 |
+
"losses = []\n",
|
526 |
+
"\n",
|
527 |
+
"for epoch in trange(epochs):\n",
|
528 |
+
" pbar = trange(steps)\n",
|
529 |
+
" iter_prompts = iter(prompts)\n",
|
530 |
+
" iter_urls = iter(urls)\n",
|
531 |
+
"\n",
|
532 |
+
" for i in pbar:\n",
|
533 |
+
" x, y = get_batch(bs, i, steps, epoch, epochs)\n",
|
534 |
+
" loss = (x-y).pow(2).mean()\n",
|
535 |
+
" # loss = spherical_distance_loss(x,y).mean() # TODO: try whatever loss they use in the CLIP paper instead\n",
|
536 |
+
" loss.backward()\n",
|
537 |
+
" opt.step()\n",
|
538 |
+
" opt.zero_grad()\n",
|
539 |
+
"\n",
|
540 |
+
" pbar.set_description(str(loss.item()))\n",
|
541 |
+
" losses.append(loss.item())"
|
542 |
+
]
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"cell_type": "code",
|
546 |
+
"source": [
|
547 |
+
"import matplotlib.pyplot as plt\n",
|
548 |
+
"\n",
|
549 |
+
"# hacky ema plot\n",
|
550 |
+
"losses_df = pd.DataFrame(losses, columns=['loss'])\n",
|
551 |
+
"losses_plot = losses_df.ewm(alpha=0.05).mean()['loss']\n",
|
552 |
+
"plt.plot(losses_plot)\n",
|
553 |
+
"plt.plot(losses)"
|
554 |
+
],
|
555 |
+
"metadata": {
|
556 |
+
"id": "J5QkXxh5PI04"
|
557 |
+
},
|
558 |
+
"id": "J5QkXxh5PI04",
|
559 |
+
"execution_count": null,
|
560 |
+
"outputs": []
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"cell_type": "code",
|
564 |
+
"source": [
|
565 |
+
"torch.save(clip_model.token_embedding.weight, \"token_embeddings.pt\")"
|
566 |
+
],
|
567 |
+
"metadata": {
|
568 |
+
"id": "MdEjBt3hRIRB"
|
569 |
+
},
|
570 |
+
"id": "MdEjBt3hRIRB",
|
571 |
+
"execution_count": null,
|
572 |
+
"outputs": []
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"cell_type": "code",
|
576 |
+
"source": [
|
577 |
+
"#@markdown 🔔\n",
|
578 |
+
"from google.colab import output\n",
|
579 |
+
"output.eval_js('new Audio(\"https://freesound.org/data/previews/80/80921_1022651-lq.ogg\").play()')"
|
580 |
+
],
|
581 |
+
"metadata": {
|
582 |
+
"cellView": "form",
|
583 |
+
"id": "IU0mqpyVTQzt"
|
584 |
+
},
|
585 |
+
"id": "IU0mqpyVTQzt",
|
586 |
+
"execution_count": null,
|
587 |
+
"outputs": []
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"cell_type": "markdown",
|
591 |
+
"source": [
|
592 |
+
"### Upload to 🤗"
|
593 |
+
],
|
594 |
+
"metadata": {
|
595 |
+
"id": "E5TP5qjAkTjL"
|
596 |
+
},
|
597 |
+
"id": "E5TP5qjAkTjL"
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"cell_type": "code",
|
601 |
+
"source": [
|
602 |
+
"#@markdown Log in\n",
|
603 |
+
"!pip install huggingface-hub -q\n",
|
604 |
+
"from huggingface_hub import notebook_login\n",
|
605 |
+
"notebook_login()"
|
606 |
+
],
|
607 |
+
"metadata": {
|
608 |
+
"id": "bUdMc0o4kBYx",
|
609 |
+
"cellView": "form"
|
610 |
+
},
|
611 |
+
"id": "bUdMc0o4kBYx",
|
612 |
+
"execution_count": null,
|
613 |
+
"outputs": []
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"cell_type": "code",
|
617 |
+
"source": [
|
618 |
+
"from huggingface_hub import HfApi\n",
|
619 |
+
"api = HfApi()\n",
|
620 |
+
"\n",
|
621 |
+
"#@markdown go ahead and create the repository on 🤗 before running this\n",
|
622 |
+
"my_repo = \"user/my-stable-inversion\" #@param {type:\"string\"}\n",
|
623 |
+
"\n",
|
624 |
+
"api.upload_file(\n",
|
625 |
+
" path_or_fileobj=\"token_embeddings.pt\",\n",
|
626 |
+
" path_in_repo=\"token_embeddings.pt\",\n",
|
627 |
+
" repo_id=my_repo,\n",
|
628 |
+
" repo_type=\"model\",\n",
|
629 |
+
")"
|
630 |
+
],
|
631 |
+
"metadata": {
|
632 |
+
"id": "WJ30dShA7koO"
|
633 |
+
},
|
634 |
+
"id": "WJ30dShA7koO",
|
635 |
+
"execution_count": null,
|
636 |
+
"outputs": []
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"cell_type": "markdown",
|
640 |
+
"source": [
|
641 |
+
"how you can load the stable inversions into a diffusers-based notebook like [Doohickey](https://github.com/aicrumb/doohickey) might look something like this\n",
|
642 |
+
"\n",
|
643 |
+
"```\n",
|
644 |
+
"from huggingface_hub import hf_hub_download\n",
|
645 |
+
"\n",
|
646 |
+
"stable_inversion = \"user/my-stable-inversion\" #@param {type:\"string\"}\n",
|
647 |
+
"if len(stable_inversion)>1:\n",
|
648 |
+
" g = hf_hub_download(repo_id=stable_inversion, filename=\"token_embeddings.pt\")\n",
|
649 |
+
" text_encoder.text_model.embeddings.token_embedding.weight = torch.load(g)\n",
|
650 |
+
"```"
|
651 |
+
],
|
652 |
+
"metadata": {
|
653 |
+
"id": "tIKiCVkHkFET"
|
654 |
+
},
|
655 |
+
"id": "tIKiCVkHkFET"
|
656 |
+
}
|
657 |
+
],
|
658 |
+
"metadata": {
|
659 |
+
"kernelspec": {
|
660 |
+
"display_name": "Python 3 (ipykernel)",
|
661 |
+
"language": "python",
|
662 |
+
"name": "python3"
|
663 |
+
},
|
664 |
+
"language_info": {
|
665 |
+
"codemirror_mode": {
|
666 |
+
"name": "ipython",
|
667 |
+
"version": 3
|
668 |
+
},
|
669 |
+
"file_extension": ".py",
|
670 |
+
"mimetype": "text/x-python",
|
671 |
+
"name": "python",
|
672 |
+
"nbconvert_exporter": "python",
|
673 |
+
"pygments_lexer": "ipython3",
|
674 |
+
"version": "3.10.4"
|
675 |
+
},
|
676 |
+
"colab": {
|
677 |
+
"provenance": [],
|
678 |
+
"collapsed_sections": []
|
679 |
+
},
|
680 |
+
"accelerator": "GPU",
|
681 |
+
"widgets": {
|
682 |
+
"application/vnd.jupyter.widget-state+json": {
|
683 |
+
"cfab11c900c44070b2dc032034b9a65d": {
|
684 |
+
"model_module": "@jupyter-widgets/controls",
|
685 |
+
"model_name": "HBoxModel",
|
686 |
+
"model_module_version": "1.5.0",
|
687 |
+
"state": {
|
688 |
+
"_dom_classes": [],
|
689 |
+
"_model_module": "@jupyter-widgets/controls",
|
690 |
+
"_model_module_version": "1.5.0",
|
691 |
+
"_model_name": "HBoxModel",
|
692 |
+
"_view_count": null,
|
693 |
+
"_view_module": "@jupyter-widgets/controls",
|
694 |
+
"_view_module_version": "1.5.0",
|
695 |
+
"_view_name": "HBoxView",
|
696 |
+
"box_style": "",
|
697 |
+
"children": [
|
698 |
+
"IPY_MODEL_edf50d7b6e8b475abd9e1ebae7778aba",
|
699 |
+
"IPY_MODEL_af697a5f975c405190c54d2a349b551c",
|
700 |
+
"IPY_MODEL_1953f85f00e04cb4bb95acadbb589b12"
|
701 |
+
],
|
702 |
+
"layout": "IPY_MODEL_d28248f12d834263a1605afed777077a"
|
703 |
+
}
|
704 |
+
},
|
705 |
+
"edf50d7b6e8b475abd9e1ebae7778aba": {
|
706 |
+
"model_module": "@jupyter-widgets/controls",
|
707 |
+
"model_name": "HTMLModel",
|
708 |
+
"model_module_version": "1.5.0",
|
709 |
+
"state": {
|
710 |
+
"_dom_classes": [],
|
711 |
+
"_model_module": "@jupyter-widgets/controls",
|
712 |
+
"_model_module_version": "1.5.0",
|
713 |
+
"_model_name": "HTMLModel",
|
714 |
+
"_view_count": null,
|
715 |
+
"_view_module": "@jupyter-widgets/controls",
|
716 |
+
"_view_module_version": "1.5.0",
|
717 |
+
"_view_name": "HTMLView",
|
718 |
+
"description": "",
|
719 |
+
"description_tooltip": null,
|
720 |
+
"layout": "IPY_MODEL_1b255d9b51cb4dee82e1d14a506bf85e",
|
721 |
+
"placeholder": "",
|
722 |
+
"style": "IPY_MODEL_effd6703ac904650a7c02fbac19d1ce9",
|
723 |
+
"value": " 25%"
|
724 |
+
}
|
725 |
+
},
|
726 |
+
"af697a5f975c405190c54d2a349b551c": {
|
727 |
+
"model_module": "@jupyter-widgets/controls",
|
728 |
+
"model_name": "FloatProgressModel",
|
729 |
+
"model_module_version": "1.5.0",
|
730 |
+
"state": {
|
731 |
+
"_dom_classes": [],
|
732 |
+
"_model_module": "@jupyter-widgets/controls",
|
733 |
+
"_model_module_version": "1.5.0",
|
734 |
+
"_model_name": "FloatProgressModel",
|
735 |
+
"_view_count": null,
|
736 |
+
"_view_module": "@jupyter-widgets/controls",
|
737 |
+
"_view_module_version": "1.5.0",
|
738 |
+
"_view_name": "ProgressView",
|
739 |
+
"bar_style": "",
|
740 |
+
"description": "",
|
741 |
+
"description_tooltip": null,
|
742 |
+
"layout": "IPY_MODEL_f62a8b3dfedd4500b795e8a9e57ee4e1",
|
743 |
+
"max": 4,
|
744 |
+
"min": 0,
|
745 |
+
"orientation": "horizontal",
|
746 |
+
"style": "IPY_MODEL_c2669c5874354798b33d7da9a5d8084d",
|
747 |
+
"value": 1
|
748 |
+
}
|
749 |
+
},
|
750 |
+
"1953f85f00e04cb4bb95acadbb589b12": {
|
751 |
+
"model_module": "@jupyter-widgets/controls",
|
752 |
+
"model_name": "HTMLModel",
|
753 |
+
"model_module_version": "1.5.0",
|
754 |
+
"state": {
|
755 |
+
"_dom_classes": [],
|
756 |
+
"_model_module": "@jupyter-widgets/controls",
|
757 |
+
"_model_module_version": "1.5.0",
|
758 |
+
"_model_name": "HTMLModel",
|
759 |
+
"_view_count": null,
|
760 |
+
"_view_module": "@jupyter-widgets/controls",
|
761 |
+
"_view_module_version": "1.5.0",
|
762 |
+
"_view_name": "HTMLView",
|
763 |
+
"description": "",
|
764 |
+
"description_tooltip": null,
|
765 |
+
"layout": "IPY_MODEL_6b085d5276bf42c8b8e6a050de4730c9",
|
766 |
+
"placeholder": "",
|
767 |
+
"style": "IPY_MODEL_47347341d5a14564a25e52179187b218",
|
768 |
+
"value": " 1/4 [10:02<30:08, 602.73s/it]"
|
769 |
+
}
|
770 |
+
},
|
771 |
+
"d28248f12d834263a1605afed777077a": {
|
772 |
+
"model_module": "@jupyter-widgets/base",
|
773 |
+
"model_name": "LayoutModel",
|
774 |
+
"model_module_version": "1.2.0",
|
775 |
+
"state": {
|
776 |
+
"_model_module": "@jupyter-widgets/base",
|
777 |
+
"_model_module_version": "1.2.0",
|
778 |
+
"_model_name": "LayoutModel",
|
779 |
+
"_view_count": null,
|
780 |
+
"_view_module": "@jupyter-widgets/base",
|
781 |
+
"_view_module_version": "1.2.0",
|
782 |
+
"_view_name": "LayoutView",
|
783 |
+
"align_content": null,
|
784 |
+
"align_items": null,
|
785 |
+
"align_self": null,
|
786 |
+
"border": null,
|
787 |
+
"bottom": null,
|
788 |
+
"display": null,
|
789 |
+
"flex": null,
|
790 |
+
"flex_flow": null,
|
791 |
+
"grid_area": null,
|
792 |
+
"grid_auto_columns": null,
|
793 |
+
"grid_auto_flow": null,
|
794 |
+
"grid_auto_rows": null,
|
795 |
+
"grid_column": null,
|
796 |
+
"grid_gap": null,
|
797 |
+
"grid_row": null,
|
798 |
+
"grid_template_areas": null,
|
799 |
+
"grid_template_columns": null,
|
800 |
+
"grid_template_rows": null,
|
801 |
+
"height": null,
|
802 |
+
"justify_content": null,
|
803 |
+
"justify_items": null,
|
804 |
+
"left": null,
|
805 |
+
"margin": null,
|
806 |
+
"max_height": null,
|
807 |
+
"max_width": null,
|
808 |
+
"min_height": null,
|
809 |
+
"min_width": null,
|
810 |
+
"object_fit": null,
|
811 |
+
"object_position": null,
|
812 |
+
"order": null,
|
813 |
+
"overflow": null,
|
814 |
+
"overflow_x": null,
|
815 |
+
"overflow_y": null,
|
816 |
+
"padding": null,
|
817 |
+
"right": null,
|
818 |
+
"top": null,
|
819 |
+
"visibility": null,
|
820 |
+
"width": null
|
821 |
+
}
|
822 |
+
},
|
823 |
+
"1b255d9b51cb4dee82e1d14a506bf85e": {
|
824 |
+
"model_module": "@jupyter-widgets/base",
|
825 |
+
"model_name": "LayoutModel",
|
826 |
+
"model_module_version": "1.2.0",
|
827 |
+
"state": {
|
828 |
+
"_model_module": "@jupyter-widgets/base",
|
829 |
+
"_model_module_version": "1.2.0",
|
830 |
+
"_model_name": "LayoutModel",
|
831 |
+
"_view_count": null,
|
832 |
+
"_view_module": "@jupyter-widgets/base",
|
833 |
+
"_view_module_version": "1.2.0",
|
834 |
+
"_view_name": "LayoutView",
|
835 |
+
"align_content": null,
|
836 |
+
"align_items": null,
|
837 |
+
"align_self": null,
|
838 |
+
"border": null,
|
839 |
+
"bottom": null,
|
840 |
+
"display": null,
|
841 |
+
"flex": null,
|
842 |
+
"flex_flow": null,
|
843 |
+
"grid_area": null,
|
844 |
+
"grid_auto_columns": null,
|
845 |
+
"grid_auto_flow": null,
|
846 |
+
"grid_auto_rows": null,
|
847 |
+
"grid_column": null,
|
848 |
+
"grid_gap": null,
|
849 |
+
"grid_row": null,
|
850 |
+
"grid_template_areas": null,
|
851 |
+
"grid_template_columns": null,
|
852 |
+
"grid_template_rows": null,
|
853 |
+
"height": null,
|
854 |
+
"justify_content": null,
|
855 |
+
"justify_items": null,
|
856 |
+
"left": null,
|
857 |
+
"margin": null,
|
858 |
+
"max_height": null,
|
859 |
+
"max_width": null,
|
860 |
+
"min_height": null,
|
861 |
+
"min_width": null,
|
862 |
+
"object_fit": null,
|
863 |
+
"object_position": null,
|
864 |
+
"order": null,
|
865 |
+
"overflow": null,
|
866 |
+
"overflow_x": null,
|
867 |
+
"overflow_y": null,
|
868 |
+
"padding": null,
|
869 |
+
"right": null,
|
870 |
+
"top": null,
|
871 |
+
"visibility": null,
|
872 |
+
"width": null
|
873 |
+
}
|
874 |
+
},
|
875 |
+
"effd6703ac904650a7c02fbac19d1ce9": {
|
876 |
+
"model_module": "@jupyter-widgets/controls",
|
877 |
+
"model_name": "DescriptionStyleModel",
|
878 |
+
"model_module_version": "1.5.0",
|
879 |
+
"state": {
|
880 |
+
"_model_module": "@jupyter-widgets/controls",
|
881 |
+
"_model_module_version": "1.5.0",
|
882 |
+
"_model_name": "DescriptionStyleModel",
|
883 |
+
"_view_count": null,
|
884 |
+
"_view_module": "@jupyter-widgets/base",
|
885 |
+
"_view_module_version": "1.2.0",
|
886 |
+
"_view_name": "StyleView",
|
887 |
+
"description_width": ""
|
888 |
+
}
|
889 |
+
},
|
890 |
+
"f62a8b3dfedd4500b795e8a9e57ee4e1": {
|
891 |
+
"model_module": "@jupyter-widgets/base",
|
892 |
+
"model_name": "LayoutModel",
|
893 |
+
"model_module_version": "1.2.0",
|
894 |
+
"state": {
|
895 |
+
"_model_module": "@jupyter-widgets/base",
|
896 |
+
"_model_module_version": "1.2.0",
|
897 |
+
"_model_name": "LayoutModel",
|
898 |
+
"_view_count": null,
|
899 |
+
"_view_module": "@jupyter-widgets/base",
|
900 |
+
"_view_module_version": "1.2.0",
|
901 |
+
"_view_name": "LayoutView",
|
902 |
+
"align_content": null,
|
903 |
+
"align_items": null,
|
904 |
+
"align_self": null,
|
905 |
+
"border": null,
|
906 |
+
"bottom": null,
|
907 |
+
"display": null,
|
908 |
+
"flex": null,
|
909 |
+
"flex_flow": null,
|
910 |
+
"grid_area": null,
|
911 |
+
"grid_auto_columns": null,
|
912 |
+
"grid_auto_flow": null,
|
913 |
+
"grid_auto_rows": null,
|
914 |
+
"grid_column": null,
|
915 |
+
"grid_gap": null,
|
916 |
+
"grid_row": null,
|
917 |
+
"grid_template_areas": null,
|
918 |
+
"grid_template_columns": null,
|
919 |
+
"grid_template_rows": null,
|
920 |
+
"height": null,
|
921 |
+
"justify_content": null,
|
922 |
+
"justify_items": null,
|
923 |
+
"left": null,
|
924 |
+
"margin": null,
|
925 |
+
"max_height": null,
|
926 |
+
"max_width": null,
|
927 |
+
"min_height": null,
|
928 |
+
"min_width": null,
|
929 |
+
"object_fit": null,
|
930 |
+
"object_position": null,
|
931 |
+
"order": null,
|
932 |
+
"overflow": null,
|
933 |
+
"overflow_x": null,
|
934 |
+
"overflow_y": null,
|
935 |
+
"padding": null,
|
936 |
+
"right": null,
|
937 |
+
"top": null,
|
938 |
+
"visibility": null,
|
939 |
+
"width": null
|
940 |
+
}
|
941 |
+
},
|
942 |
+
"c2669c5874354798b33d7da9a5d8084d": {
|
943 |
+
"model_module": "@jupyter-widgets/controls",
|
944 |
+
"model_name": "ProgressStyleModel",
|
945 |
+
"model_module_version": "1.5.0",
|
946 |
+
"state": {
|
947 |
+
"_model_module": "@jupyter-widgets/controls",
|
948 |
+
"_model_module_version": "1.5.0",
|
949 |
+
"_model_name": "ProgressStyleModel",
|
950 |
+
"_view_count": null,
|
951 |
+
"_view_module": "@jupyter-widgets/base",
|
952 |
+
"_view_module_version": "1.2.0",
|
953 |
+
"_view_name": "StyleView",
|
954 |
+
"bar_color": null,
|
955 |
+
"description_width": ""
|
956 |
+
}
|
957 |
+
},
|
958 |
+
"6b085d5276bf42c8b8e6a050de4730c9": {
|
959 |
+
"model_module": "@jupyter-widgets/base",
|
960 |
+
"model_name": "LayoutModel",
|
961 |
+
"model_module_version": "1.2.0",
|
962 |
+
"state": {
|
963 |
+
"_model_module": "@jupyter-widgets/base",
|
964 |
+
"_model_module_version": "1.2.0",
|
965 |
+
"_model_name": "LayoutModel",
|
966 |
+
"_view_count": null,
|
967 |
+
"_view_module": "@jupyter-widgets/base",
|
968 |
+
"_view_module_version": "1.2.0",
|
969 |
+
"_view_name": "LayoutView",
|
970 |
+
"align_content": null,
|
971 |
+
"align_items": null,
|
972 |
+
"align_self": null,
|
973 |
+
"border": null,
|
974 |
+
"bottom": null,
|
975 |
+
"display": null,
|
976 |
+
"flex": null,
|
977 |
+
"flex_flow": null,
|
978 |
+
"grid_area": null,
|
979 |
+
"grid_auto_columns": null,
|
980 |
+
"grid_auto_flow": null,
|
981 |
+
"grid_auto_rows": null,
|
982 |
+
"grid_column": null,
|
983 |
+
"grid_gap": null,
|
984 |
+
"grid_row": null,
|
985 |
+
"grid_template_areas": null,
|
986 |
+
"grid_template_columns": null,
|
987 |
+
"grid_template_rows": null,
|
988 |
+
"height": null,
|
989 |
+
"justify_content": null,
|
990 |
+
"justify_items": null,
|
991 |
+
"left": null,
|
992 |
+
"margin": null,
|
993 |
+
"max_height": null,
|
994 |
+
"max_width": null,
|
995 |
+
"min_height": null,
|
996 |
+
"min_width": null,
|
997 |
+
"object_fit": null,
|
998 |
+
"object_position": null,
|
999 |
+
"order": null,
|
1000 |
+
"overflow": null,
|
1001 |
+
"overflow_x": null,
|
1002 |
+
"overflow_y": null,
|
1003 |
+
"padding": null,
|
1004 |
+
"right": null,
|
1005 |
+
"top": null,
|
1006 |
+
"visibility": null,
|
1007 |
+
"width": null
|
1008 |
+
}
|
1009 |
+
},
|
1010 |
+
"47347341d5a14564a25e52179187b218": {
|
1011 |
+
"model_module": "@jupyter-widgets/controls",
|
1012 |
+
"model_name": "DescriptionStyleModel",
|
1013 |
+
"model_module_version": "1.5.0",
|
1014 |
+
"state": {
|
1015 |
+
"_model_module": "@jupyter-widgets/controls",
|
1016 |
+
"_model_module_version": "1.5.0",
|
1017 |
+
"_model_name": "DescriptionStyleModel",
|
1018 |
+
"_view_count": null,
|
1019 |
+
"_view_module": "@jupyter-widgets/base",
|
1020 |
+
"_view_module_version": "1.2.0",
|
1021 |
+
"_view_name": "StyleView",
|
1022 |
+
"description_width": ""
|
1023 |
+
}
|
1024 |
+
},
|
1025 |
+
"39487ee2262647a79ed05bd89413ec25": {
|
1026 |
+
"model_module": "@jupyter-widgets/controls",
|
1027 |
+
"model_name": "HBoxModel",
|
1028 |
+
"model_module_version": "1.5.0",
|
1029 |
+
"state": {
|
1030 |
+
"_dom_classes": [],
|
1031 |
+
"_model_module": "@jupyter-widgets/controls",
|
1032 |
+
"_model_module_version": "1.5.0",
|
1033 |
+
"_model_name": "HBoxModel",
|
1034 |
+
"_view_count": null,
|
1035 |
+
"_view_module": "@jupyter-widgets/controls",
|
1036 |
+
"_view_module_version": "1.5.0",
|
1037 |
+
"_view_name": "HBoxView",
|
1038 |
+
"box_style": "",
|
1039 |
+
"children": [
|
1040 |
+
"IPY_MODEL_37fd57a2be584e37aade4f200aca564e",
|
1041 |
+
"IPY_MODEL_2daa2d8768f94963b4be13ee5108ec16",
|
1042 |
+
"IPY_MODEL_41d52c3d2db543ac8654f2d79ea72f51"
|
1043 |
+
],
|
1044 |
+
"layout": "IPY_MODEL_cee7cfd5a46a4a86a048e84c9aa6df56"
|
1045 |
+
}
|
1046 |
+
},
|
1047 |
+
"37fd57a2be584e37aade4f200aca564e": {
|
1048 |
+
"model_module": "@jupyter-widgets/controls",
|
1049 |
+
"model_name": "HTMLModel",
|
1050 |
+
"model_module_version": "1.5.0",
|
1051 |
+
"state": {
|
1052 |
+
"_dom_classes": [],
|
1053 |
+
"_model_module": "@jupyter-widgets/controls",
|
1054 |
+
"_model_module_version": "1.5.0",
|
1055 |
+
"_model_name": "HTMLModel",
|
1056 |
+
"_view_count": null,
|
1057 |
+
"_view_module": "@jupyter-widgets/controls",
|
1058 |
+
"_view_module_version": "1.5.0",
|
1059 |
+
"_view_name": "HTMLView",
|
1060 |
+
"description": "",
|
1061 |
+
"description_tooltip": null,
|
1062 |
+
"layout": "IPY_MODEL_365846f3939d49188dd2698ccb4a0c6d",
|
1063 |
+
"placeholder": "",
|
1064 |
+
"style": "IPY_MODEL_fa8cd1c1559248aeb8a920d6a1f7b8ca",
|
1065 |
+
"value": "0.277587890625: 100%"
|
1066 |
+
}
|
1067 |
+
},
|
1068 |
+
"2daa2d8768f94963b4be13ee5108ec16": {
|
1069 |
+
"model_module": "@jupyter-widgets/controls",
|
1070 |
+
"model_name": "FloatProgressModel",
|
1071 |
+
"model_module_version": "1.5.0",
|
1072 |
+
"state": {
|
1073 |
+
"_dom_classes": [],
|
1074 |
+
"_model_module": "@jupyter-widgets/controls",
|
1075 |
+
"_model_module_version": "1.5.0",
|
1076 |
+
"_model_name": "FloatProgressModel",
|
1077 |
+
"_view_count": null,
|
1078 |
+
"_view_module": "@jupyter-widgets/controls",
|
1079 |
+
"_view_module_version": "1.5.0",
|
1080 |
+
"_view_name": "ProgressView",
|
1081 |
+
"bar_style": "success",
|
1082 |
+
"description": "",
|
1083 |
+
"description_tooltip": null,
|
1084 |
+
"layout": "IPY_MODEL_8d6f469af323498aae3b8c2fd2e4f7de",
|
1085 |
+
"max": 64,
|
1086 |
+
"min": 0,
|
1087 |
+
"orientation": "horizontal",
|
1088 |
+
"style": "IPY_MODEL_a58aa5c526234c25bd330564a8631310",
|
1089 |
+
"value": 64
|
1090 |
+
}
|
1091 |
+
},
|
1092 |
+
"41d52c3d2db543ac8654f2d79ea72f51": {
|
1093 |
+
"model_module": "@jupyter-widgets/controls",
|
1094 |
+
"model_name": "HTMLModel",
|
1095 |
+
"model_module_version": "1.5.0",
|
1096 |
+
"state": {
|
1097 |
+
"_dom_classes": [],
|
1098 |
+
"_model_module": "@jupyter-widgets/controls",
|
1099 |
+
"_model_module_version": "1.5.0",
|
1100 |
+
"_model_name": "HTMLModel",
|
1101 |
+
"_view_count": null,
|
1102 |
+
"_view_module": "@jupyter-widgets/controls",
|
1103 |
+
"_view_module_version": "1.5.0",
|
1104 |
+
"_view_name": "HTMLView",
|
1105 |
+
"description": "",
|
1106 |
+
"description_tooltip": null,
|
1107 |
+
"layout": "IPY_MODEL_355e7a4bac0f41d1a0a7aba831c1916b",
|
1108 |
+
"placeholder": "",
|
1109 |
+
"style": "IPY_MODEL_d8d127599a964af2b22957e7cadc3949",
|
1110 |
+
"value": " 64/64 [10:02<00:00, 9.10s/it]"
|
1111 |
+
}
|
1112 |
+
},
|
1113 |
+
"cee7cfd5a46a4a86a048e84c9aa6df56": {
|
1114 |
+
"model_module": "@jupyter-widgets/base",
|
1115 |
+
"model_name": "LayoutModel",
|
1116 |
+
"model_module_version": "1.2.0",
|
1117 |
+
"state": {
|
1118 |
+
"_model_module": "@jupyter-widgets/base",
|
1119 |
+
"_model_module_version": "1.2.0",
|
1120 |
+
"_model_name": "LayoutModel",
|
1121 |
+
"_view_count": null,
|
1122 |
+
"_view_module": "@jupyter-widgets/base",
|
1123 |
+
"_view_module_version": "1.2.0",
|
1124 |
+
"_view_name": "LayoutView",
|
1125 |
+
"align_content": null,
|
1126 |
+
"align_items": null,
|
1127 |
+
"align_self": null,
|
1128 |
+
"border": null,
|
1129 |
+
"bottom": null,
|
1130 |
+
"display": null,
|
1131 |
+
"flex": null,
|
1132 |
+
"flex_flow": null,
|
1133 |
+
"grid_area": null,
|
1134 |
+
"grid_auto_columns": null,
|
1135 |
+
"grid_auto_flow": null,
|
1136 |
+
"grid_auto_rows": null,
|
1137 |
+
"grid_column": null,
|
1138 |
+
"grid_gap": null,
|
1139 |
+
"grid_row": null,
|
1140 |
+
"grid_template_areas": null,
|
1141 |
+
"grid_template_columns": null,
|
1142 |
+
"grid_template_rows": null,
|
1143 |
+
"height": null,
|
1144 |
+
"justify_content": null,
|
1145 |
+
"justify_items": null,
|
1146 |
+
"left": null,
|
1147 |
+
"margin": null,
|
1148 |
+
"max_height": null,
|
1149 |
+
"max_width": null,
|
1150 |
+
"min_height": null,
|
1151 |
+
"min_width": null,
|
1152 |
+
"object_fit": null,
|
1153 |
+
"object_position": null,
|
1154 |
+
"order": null,
|
1155 |
+
"overflow": null,
|
1156 |
+
"overflow_x": null,
|
1157 |
+
"overflow_y": null,
|
1158 |
+
"padding": null,
|
1159 |
+
"right": null,
|
1160 |
+
"top": null,
|
1161 |
+
"visibility": null,
|
1162 |
+
"width": null
|
1163 |
+
}
|
1164 |
+
},
|
1165 |
+
"365846f3939d49188dd2698ccb4a0c6d": {
|
1166 |
+
"model_module": "@jupyter-widgets/base",
|
1167 |
+
"model_name": "LayoutModel",
|
1168 |
+
"model_module_version": "1.2.0",
|
1169 |
+
"state": {
|
1170 |
+
"_model_module": "@jupyter-widgets/base",
|
1171 |
+
"_model_module_version": "1.2.0",
|
1172 |
+
"_model_name": "LayoutModel",
|
1173 |
+
"_view_count": null,
|
1174 |
+
"_view_module": "@jupyter-widgets/base",
|
1175 |
+
"_view_module_version": "1.2.0",
|
1176 |
+
"_view_name": "LayoutView",
|
1177 |
+
"align_content": null,
|
1178 |
+
"align_items": null,
|
1179 |
+
"align_self": null,
|
1180 |
+
"border": null,
|
1181 |
+
"bottom": null,
|
1182 |
+
"display": null,
|
1183 |
+
"flex": null,
|
1184 |
+
"flex_flow": null,
|
1185 |
+
"grid_area": null,
|
1186 |
+
"grid_auto_columns": null,
|
1187 |
+
"grid_auto_flow": null,
|
1188 |
+
"grid_auto_rows": null,
|
1189 |
+
"grid_column": null,
|
1190 |
+
"grid_gap": null,
|
1191 |
+
"grid_row": null,
|
1192 |
+
"grid_template_areas": null,
|
1193 |
+
"grid_template_columns": null,
|
1194 |
+
"grid_template_rows": null,
|
1195 |
+
"height": null,
|
1196 |
+
"justify_content": null,
|
1197 |
+
"justify_items": null,
|
1198 |
+
"left": null,
|
1199 |
+
"margin": null,
|
1200 |
+
"max_height": null,
|
1201 |
+
"max_width": null,
|
1202 |
+
"min_height": null,
|
1203 |
+
"min_width": null,
|
1204 |
+
"object_fit": null,
|
1205 |
+
"object_position": null,
|
1206 |
+
"order": null,
|
1207 |
+
"overflow": null,
|
1208 |
+
"overflow_x": null,
|
1209 |
+
"overflow_y": null,
|
1210 |
+
"padding": null,
|
1211 |
+
"right": null,
|
1212 |
+
"top": null,
|
1213 |
+
"visibility": null,
|
1214 |
+
"width": null
|
1215 |
+
}
|
1216 |
+
},
|
1217 |
+
"fa8cd1c1559248aeb8a920d6a1f7b8ca": {
|
1218 |
+
"model_module": "@jupyter-widgets/controls",
|
1219 |
+
"model_name": "DescriptionStyleModel",
|
1220 |
+
"model_module_version": "1.5.0",
|
1221 |
+
"state": {
|
1222 |
+
"_model_module": "@jupyter-widgets/controls",
|
1223 |
+
"_model_module_version": "1.5.0",
|
1224 |
+
"_model_name": "DescriptionStyleModel",
|
1225 |
+
"_view_count": null,
|
1226 |
+
"_view_module": "@jupyter-widgets/base",
|
1227 |
+
"_view_module_version": "1.2.0",
|
1228 |
+
"_view_name": "StyleView",
|
1229 |
+
"description_width": ""
|
1230 |
+
}
|
1231 |
+
},
|
1232 |
+
"8d6f469af323498aae3b8c2fd2e4f7de": {
|
1233 |
+
"model_module": "@jupyter-widgets/base",
|
1234 |
+
"model_name": "LayoutModel",
|
1235 |
+
"model_module_version": "1.2.0",
|
1236 |
+
"state": {
|
1237 |
+
"_model_module": "@jupyter-widgets/base",
|
1238 |
+
"_model_module_version": "1.2.0",
|
1239 |
+
"_model_name": "LayoutModel",
|
1240 |
+
"_view_count": null,
|
1241 |
+
"_view_module": "@jupyter-widgets/base",
|
1242 |
+
"_view_module_version": "1.2.0",
|
1243 |
+
"_view_name": "LayoutView",
|
1244 |
+
"align_content": null,
|
1245 |
+
"align_items": null,
|
1246 |
+
"align_self": null,
|
1247 |
+
"border": null,
|
1248 |
+
"bottom": null,
|
1249 |
+
"display": null,
|
1250 |
+
"flex": null,
|
1251 |
+
"flex_flow": null,
|
1252 |
+
"grid_area": null,
|
1253 |
+
"grid_auto_columns": null,
|
1254 |
+
"grid_auto_flow": null,
|
1255 |
+
"grid_auto_rows": null,
|
1256 |
+
"grid_column": null,
|
1257 |
+
"grid_gap": null,
|
1258 |
+
"grid_row": null,
|
1259 |
+
"grid_template_areas": null,
|
1260 |
+
"grid_template_columns": null,
|
1261 |
+
"grid_template_rows": null,
|
1262 |
+
"height": null,
|
1263 |
+
"justify_content": null,
|
1264 |
+
"justify_items": null,
|
1265 |
+
"left": null,
|
1266 |
+
"margin": null,
|
1267 |
+
"max_height": null,
|
1268 |
+
"max_width": null,
|
1269 |
+
"min_height": null,
|
1270 |
+
"min_width": null,
|
1271 |
+
"object_fit": null,
|
1272 |
+
"object_position": null,
|
1273 |
+
"order": null,
|
1274 |
+
"overflow": null,
|
1275 |
+
"overflow_x": null,
|
1276 |
+
"overflow_y": null,
|
1277 |
+
"padding": null,
|
1278 |
+
"right": null,
|
1279 |
+
"top": null,
|
1280 |
+
"visibility": null,
|
1281 |
+
"width": null
|
1282 |
+
}
|
1283 |
+
},
|
1284 |
+
"a58aa5c526234c25bd330564a8631310": {
|
1285 |
+
"model_module": "@jupyter-widgets/controls",
|
1286 |
+
"model_name": "ProgressStyleModel",
|
1287 |
+
"model_module_version": "1.5.0",
|
1288 |
+
"state": {
|
1289 |
+
"_model_module": "@jupyter-widgets/controls",
|
1290 |
+
"_model_module_version": "1.5.0",
|
1291 |
+
"_model_name": "ProgressStyleModel",
|
1292 |
+
"_view_count": null,
|
1293 |
+
"_view_module": "@jupyter-widgets/base",
|
1294 |
+
"_view_module_version": "1.2.0",
|
1295 |
+
"_view_name": "StyleView",
|
1296 |
+
"bar_color": null,
|
1297 |
+
"description_width": ""
|
1298 |
+
}
|
1299 |
+
},
|
1300 |
+
"355e7a4bac0f41d1a0a7aba831c1916b": {
|
1301 |
+
"model_module": "@jupyter-widgets/base",
|
1302 |
+
"model_name": "LayoutModel",
|
1303 |
+
"model_module_version": "1.2.0",
|
1304 |
+
"state": {
|
1305 |
+
"_model_module": "@jupyter-widgets/base",
|
1306 |
+
"_model_module_version": "1.2.0",
|
1307 |
+
"_model_name": "LayoutModel",
|
1308 |
+
"_view_count": null,
|
1309 |
+
"_view_module": "@jupyter-widgets/base",
|
1310 |
+
"_view_module_version": "1.2.0",
|
1311 |
+
"_view_name": "LayoutView",
|
1312 |
+
"align_content": null,
|
1313 |
+
"align_items": null,
|
1314 |
+
"align_self": null,
|
1315 |
+
"border": null,
|
1316 |
+
"bottom": null,
|
1317 |
+
"display": null,
|
1318 |
+
"flex": null,
|
1319 |
+
"flex_flow": null,
|
1320 |
+
"grid_area": null,
|
1321 |
+
"grid_auto_columns": null,
|
1322 |
+
"grid_auto_flow": null,
|
1323 |
+
"grid_auto_rows": null,
|
1324 |
+
"grid_column": null,
|
1325 |
+
"grid_gap": null,
|
1326 |
+
"grid_row": null,
|
1327 |
+
"grid_template_areas": null,
|
1328 |
+
"grid_template_columns": null,
|
1329 |
+
"grid_template_rows": null,
|
1330 |
+
"height": null,
|
1331 |
+
"justify_content": null,
|
1332 |
+
"justify_items": null,
|
1333 |
+
"left": null,
|
1334 |
+
"margin": null,
|
1335 |
+
"max_height": null,
|
1336 |
+
"max_width": null,
|
1337 |
+
"min_height": null,
|
1338 |
+
"min_width": null,
|
1339 |
+
"object_fit": null,
|
1340 |
+
"object_position": null,
|
1341 |
+
"order": null,
|
1342 |
+
"overflow": null,
|
1343 |
+
"overflow_x": null,
|
1344 |
+
"overflow_y": null,
|
1345 |
+
"padding": null,
|
1346 |
+
"right": null,
|
1347 |
+
"top": null,
|
1348 |
+
"visibility": null,
|
1349 |
+
"width": null
|
1350 |
+
}
|
1351 |
+
},
|
1352 |
+
"d8d127599a964af2b22957e7cadc3949": {
|
1353 |
+
"model_module": "@jupyter-widgets/controls",
|
1354 |
+
"model_name": "DescriptionStyleModel",
|
1355 |
+
"model_module_version": "1.5.0",
|
1356 |
+
"state": {
|
1357 |
+
"_model_module": "@jupyter-widgets/controls",
|
1358 |
+
"_model_module_version": "1.5.0",
|
1359 |
+
"_model_name": "DescriptionStyleModel",
|
1360 |
+
"_view_count": null,
|
1361 |
+
"_view_module": "@jupyter-widgets/base",
|
1362 |
+
"_view_module_version": "1.2.0",
|
1363 |
+
"_view_name": "StyleView",
|
1364 |
+
"description_width": ""
|
1365 |
+
}
|
1366 |
+
},
|
1367 |
+
"94c994a72e6e47a581ef47eafc4f8621": {
|
1368 |
+
"model_module": "@jupyter-widgets/controls",
|
1369 |
+
"model_name": "HBoxModel",
|
1370 |
+
"model_module_version": "1.5.0",
|
1371 |
+
"state": {
|
1372 |
+
"_dom_classes": [],
|
1373 |
+
"_model_module": "@jupyter-widgets/controls",
|
1374 |
+
"_model_module_version": "1.5.0",
|
1375 |
+
"_model_name": "HBoxModel",
|
1376 |
+
"_view_count": null,
|
1377 |
+
"_view_module": "@jupyter-widgets/controls",
|
1378 |
+
"_view_module_version": "1.5.0",
|
1379 |
+
"_view_name": "HBoxView",
|
1380 |
+
"box_style": "",
|
1381 |
+
"children": [
|
1382 |
+
"IPY_MODEL_e2409e281b874665bbe830fc5843e4fe",
|
1383 |
+
"IPY_MODEL_c980cbb0b5ba43378c84ea122829e70e",
|
1384 |
+
"IPY_MODEL_08ab7aae4ac341909798caf190c84ada"
|
1385 |
+
],
|
1386 |
+
"layout": "IPY_MODEL_9decfef2a41f42f0a3b77dfaa3a02bac"
|
1387 |
+
}
|
1388 |
+
},
|
1389 |
+
"e2409e281b874665bbe830fc5843e4fe": {
|
1390 |
+
"model_module": "@jupyter-widgets/controls",
|
1391 |
+
"model_name": "HTMLModel",
|
1392 |
+
"model_module_version": "1.5.0",
|
1393 |
+
"state": {
|
1394 |
+
"_dom_classes": [],
|
1395 |
+
"_model_module": "@jupyter-widgets/controls",
|
1396 |
+
"_model_module_version": "1.5.0",
|
1397 |
+
"_model_name": "HTMLModel",
|
1398 |
+
"_view_count": null,
|
1399 |
+
"_view_module": "@jupyter-widgets/controls",
|
1400 |
+
"_view_module_version": "1.5.0",
|
1401 |
+
"_view_name": "HTMLView",
|
1402 |
+
"description": "",
|
1403 |
+
"description_tooltip": null,
|
1404 |
+
"layout": "IPY_MODEL_a0f24920a480438381da74562a7f7df1",
|
1405 |
+
"placeholder": "",
|
1406 |
+
"style": "IPY_MODEL_bc4723c3d801406b891f808c84e9e83b",
|
1407 |
+
"value": "0.261962890625: 80%"
|
1408 |
+
}
|
1409 |
+
},
|
1410 |
+
"c980cbb0b5ba43378c84ea122829e70e": {
|
1411 |
+
"model_module": "@jupyter-widgets/controls",
|
1412 |
+
"model_name": "FloatProgressModel",
|
1413 |
+
"model_module_version": "1.5.0",
|
1414 |
+
"state": {
|
1415 |
+
"_dom_classes": [],
|
1416 |
+
"_model_module": "@jupyter-widgets/controls",
|
1417 |
+
"_model_module_version": "1.5.0",
|
1418 |
+
"_model_name": "FloatProgressModel",
|
1419 |
+
"_view_count": null,
|
1420 |
+
"_view_module": "@jupyter-widgets/controls",
|
1421 |
+
"_view_module_version": "1.5.0",
|
1422 |
+
"_view_name": "ProgressView",
|
1423 |
+
"bar_style": "",
|
1424 |
+
"description": "",
|
1425 |
+
"description_tooltip": null,
|
1426 |
+
"layout": "IPY_MODEL_c464d7549104481a90f75f3e5b219189",
|
1427 |
+
"max": 64,
|
1428 |
+
"min": 0,
|
1429 |
+
"orientation": "horizontal",
|
1430 |
+
"style": "IPY_MODEL_d9792cd6d5034352a3a9f2122bb5d9c0",
|
1431 |
+
"value": 51
|
1432 |
+
}
|
1433 |
+
},
|
1434 |
+
"08ab7aae4ac341909798caf190c84ada": {
|
1435 |
+
"model_module": "@jupyter-widgets/controls",
|
1436 |
+
"model_name": "HTMLModel",
|
1437 |
+
"model_module_version": "1.5.0",
|
1438 |
+
"state": {
|
1439 |
+
"_dom_classes": [],
|
1440 |
+
"_model_module": "@jupyter-widgets/controls",
|
1441 |
+
"_model_module_version": "1.5.0",
|
1442 |
+
"_model_name": "HTMLModel",
|
1443 |
+
"_view_count": null,
|
1444 |
+
"_view_module": "@jupyter-widgets/controls",
|
1445 |
+
"_view_module_version": "1.5.0",
|
1446 |
+
"_view_name": "HTMLView",
|
1447 |
+
"description": "",
|
1448 |
+
"description_tooltip": null,
|
1449 |
+
"layout": "IPY_MODEL_8a9c974907c74fe29b6a323df7df0d4d",
|
1450 |
+
"placeholder": "",
|
1451 |
+
"style": "IPY_MODEL_40ae1be859d74847b4f0944c4027e1cf",
|
1452 |
+
"value": " 51/64 [07:22<02:13, 10.29s/it]"
|
1453 |
+
}
|
1454 |
+
},
|
1455 |
+
"9decfef2a41f42f0a3b77dfaa3a02bac": {
|
1456 |
+
"model_module": "@jupyter-widgets/base",
|
1457 |
+
"model_name": "LayoutModel",
|
1458 |
+
"model_module_version": "1.2.0",
|
1459 |
+
"state": {
|
1460 |
+
"_model_module": "@jupyter-widgets/base",
|
1461 |
+
"_model_module_version": "1.2.0",
|
1462 |
+
"_model_name": "LayoutModel",
|
1463 |
+
"_view_count": null,
|
1464 |
+
"_view_module": "@jupyter-widgets/base",
|
1465 |
+
"_view_module_version": "1.2.0",
|
1466 |
+
"_view_name": "LayoutView",
|
1467 |
+
"align_content": null,
|
1468 |
+
"align_items": null,
|
1469 |
+
"align_self": null,
|
1470 |
+
"border": null,
|
1471 |
+
"bottom": null,
|
1472 |
+
"display": null,
|
1473 |
+
"flex": null,
|
1474 |
+
"flex_flow": null,
|
1475 |
+
"grid_area": null,
|
1476 |
+
"grid_auto_columns": null,
|
1477 |
+
"grid_auto_flow": null,
|
1478 |
+
"grid_auto_rows": null,
|
1479 |
+
"grid_column": null,
|
1480 |
+
"grid_gap": null,
|
1481 |
+
"grid_row": null,
|
1482 |
+
"grid_template_areas": null,
|
1483 |
+
"grid_template_columns": null,
|
1484 |
+
"grid_template_rows": null,
|
1485 |
+
"height": null,
|
1486 |
+
"justify_content": null,
|
1487 |
+
"justify_items": null,
|
1488 |
+
"left": null,
|
1489 |
+
"margin": null,
|
1490 |
+
"max_height": null,
|
1491 |
+
"max_width": null,
|
1492 |
+
"min_height": null,
|
1493 |
+
"min_width": null,
|
1494 |
+
"object_fit": null,
|
1495 |
+
"object_position": null,
|
1496 |
+
"order": null,
|
1497 |
+
"overflow": null,
|
1498 |
+
"overflow_x": null,
|
1499 |
+
"overflow_y": null,
|
1500 |
+
"padding": null,
|
1501 |
+
"right": null,
|
1502 |
+
"top": null,
|
1503 |
+
"visibility": null,
|
1504 |
+
"width": null
|
1505 |
+
}
|
1506 |
+
},
|
1507 |
+
"a0f24920a480438381da74562a7f7df1": {
|
1508 |
+
"model_module": "@jupyter-widgets/base",
|
1509 |
+
"model_name": "LayoutModel",
|
1510 |
+
"model_module_version": "1.2.0",
|
1511 |
+
"state": {
|
1512 |
+
"_model_module": "@jupyter-widgets/base",
|
1513 |
+
"_model_module_version": "1.2.0",
|
1514 |
+
"_model_name": "LayoutModel",
|
1515 |
+
"_view_count": null,
|
1516 |
+
"_view_module": "@jupyter-widgets/base",
|
1517 |
+
"_view_module_version": "1.2.0",
|
1518 |
+
"_view_name": "LayoutView",
|
1519 |
+
"align_content": null,
|
1520 |
+
"align_items": null,
|
1521 |
+
"align_self": null,
|
1522 |
+
"border": null,
|
1523 |
+
"bottom": null,
|
1524 |
+
"display": null,
|
1525 |
+
"flex": null,
|
1526 |
+
"flex_flow": null,
|
1527 |
+
"grid_area": null,
|
1528 |
+
"grid_auto_columns": null,
|
1529 |
+
"grid_auto_flow": null,
|
1530 |
+
"grid_auto_rows": null,
|
1531 |
+
"grid_column": null,
|
1532 |
+
"grid_gap": null,
|
1533 |
+
"grid_row": null,
|
1534 |
+
"grid_template_areas": null,
|
1535 |
+
"grid_template_columns": null,
|
1536 |
+
"grid_template_rows": null,
|
1537 |
+
"height": null,
|
1538 |
+
"justify_content": null,
|
1539 |
+
"justify_items": null,
|
1540 |
+
"left": null,
|
1541 |
+
"margin": null,
|
1542 |
+
"max_height": null,
|
1543 |
+
"max_width": null,
|
1544 |
+
"min_height": null,
|
1545 |
+
"min_width": null,
|
1546 |
+
"object_fit": null,
|
1547 |
+
"object_position": null,
|
1548 |
+
"order": null,
|
1549 |
+
"overflow": null,
|
1550 |
+
"overflow_x": null,
|
1551 |
+
"overflow_y": null,
|
1552 |
+
"padding": null,
|
1553 |
+
"right": null,
|
1554 |
+
"top": null,
|
1555 |
+
"visibility": null,
|
1556 |
+
"width": null
|
1557 |
+
}
|
1558 |
+
},
|
1559 |
+
"bc4723c3d801406b891f808c84e9e83b": {
|
1560 |
+
"model_module": "@jupyter-widgets/controls",
|
1561 |
+
"model_name": "DescriptionStyleModel",
|
1562 |
+
"model_module_version": "1.5.0",
|
1563 |
+
"state": {
|
1564 |
+
"_model_module": "@jupyter-widgets/controls",
|
1565 |
+
"_model_module_version": "1.5.0",
|
1566 |
+
"_model_name": "DescriptionStyleModel",
|
1567 |
+
"_view_count": null,
|
1568 |
+
"_view_module": "@jupyter-widgets/base",
|
1569 |
+
"_view_module_version": "1.2.0",
|
1570 |
+
"_view_name": "StyleView",
|
1571 |
+
"description_width": ""
|
1572 |
+
}
|
1573 |
+
},
|
1574 |
+
"c464d7549104481a90f75f3e5b219189": {
|
1575 |
+
"model_module": "@jupyter-widgets/base",
|
1576 |
+
"model_name": "LayoutModel",
|
1577 |
+
"model_module_version": "1.2.0",
|
1578 |
+
"state": {
|
1579 |
+
"_model_module": "@jupyter-widgets/base",
|
1580 |
+
"_model_module_version": "1.2.0",
|
1581 |
+
"_model_name": "LayoutModel",
|
1582 |
+
"_view_count": null,
|
1583 |
+
"_view_module": "@jupyter-widgets/base",
|
1584 |
+
"_view_module_version": "1.2.0",
|
1585 |
+
"_view_name": "LayoutView",
|
1586 |
+
"align_content": null,
|
1587 |
+
"align_items": null,
|
1588 |
+
"align_self": null,
|
1589 |
+
"border": null,
|
1590 |
+
"bottom": null,
|
1591 |
+
"display": null,
|
1592 |
+
"flex": null,
|
1593 |
+
"flex_flow": null,
|
1594 |
+
"grid_area": null,
|
1595 |
+
"grid_auto_columns": null,
|
1596 |
+
"grid_auto_flow": null,
|
1597 |
+
"grid_auto_rows": null,
|
1598 |
+
"grid_column": null,
|
1599 |
+
"grid_gap": null,
|
1600 |
+
"grid_row": null,
|
1601 |
+
"grid_template_areas": null,
|
1602 |
+
"grid_template_columns": null,
|
1603 |
+
"grid_template_rows": null,
|
1604 |
+
"height": null,
|
1605 |
+
"justify_content": null,
|
1606 |
+
"justify_items": null,
|
1607 |
+
"left": null,
|
1608 |
+
"margin": null,
|
1609 |
+
"max_height": null,
|
1610 |
+
"max_width": null,
|
1611 |
+
"min_height": null,
|
1612 |
+
"min_width": null,
|
1613 |
+
"object_fit": null,
|
1614 |
+
"object_position": null,
|
1615 |
+
"order": null,
|
1616 |
+
"overflow": null,
|
1617 |
+
"overflow_x": null,
|
1618 |
+
"overflow_y": null,
|
1619 |
+
"padding": null,
|
1620 |
+
"right": null,
|
1621 |
+
"top": null,
|
1622 |
+
"visibility": null,
|
1623 |
+
"width": null
|
1624 |
+
}
|
1625 |
+
},
|
1626 |
+
"d9792cd6d5034352a3a9f2122bb5d9c0": {
|
1627 |
+
"model_module": "@jupyter-widgets/controls",
|
1628 |
+
"model_name": "ProgressStyleModel",
|
1629 |
+
"model_module_version": "1.5.0",
|
1630 |
+
"state": {
|
1631 |
+
"_model_module": "@jupyter-widgets/controls",
|
1632 |
+
"_model_module_version": "1.5.0",
|
1633 |
+
"_model_name": "ProgressStyleModel",
|
1634 |
+
"_view_count": null,
|
1635 |
+
"_view_module": "@jupyter-widgets/base",
|
1636 |
+
"_view_module_version": "1.2.0",
|
1637 |
+
"_view_name": "StyleView",
|
1638 |
+
"bar_color": null,
|
1639 |
+
"description_width": ""
|
1640 |
+
}
|
1641 |
+
},
|
1642 |
+
"8a9c974907c74fe29b6a323df7df0d4d": {
|
1643 |
+
"model_module": "@jupyter-widgets/base",
|
1644 |
+
"model_name": "LayoutModel",
|
1645 |
+
"model_module_version": "1.2.0",
|
1646 |
+
"state": {
|
1647 |
+
"_model_module": "@jupyter-widgets/base",
|
1648 |
+
"_model_module_version": "1.2.0",
|
1649 |
+
"_model_name": "LayoutModel",
|
1650 |
+
"_view_count": null,
|
1651 |
+
"_view_module": "@jupyter-widgets/base",
|
1652 |
+
"_view_module_version": "1.2.0",
|
1653 |
+
"_view_name": "LayoutView",
|
1654 |
+
"align_content": null,
|
1655 |
+
"align_items": null,
|
1656 |
+
"align_self": null,
|
1657 |
+
"border": null,
|
1658 |
+
"bottom": null,
|
1659 |
+
"display": null,
|
1660 |
+
"flex": null,
|
1661 |
+
"flex_flow": null,
|
1662 |
+
"grid_area": null,
|
1663 |
+
"grid_auto_columns": null,
|
1664 |
+
"grid_auto_flow": null,
|
1665 |
+
"grid_auto_rows": null,
|
1666 |
+
"grid_column": null,
|
1667 |
+
"grid_gap": null,
|
1668 |
+
"grid_row": null,
|
1669 |
+
"grid_template_areas": null,
|
1670 |
+
"grid_template_columns": null,
|
1671 |
+
"grid_template_rows": null,
|
1672 |
+
"height": null,
|
1673 |
+
"justify_content": null,
|
1674 |
+
"justify_items": null,
|
1675 |
+
"left": null,
|
1676 |
+
"margin": null,
|
1677 |
+
"max_height": null,
|
1678 |
+
"max_width": null,
|
1679 |
+
"min_height": null,
|
1680 |
+
"min_width": null,
|
1681 |
+
"object_fit": null,
|
1682 |
+
"object_position": null,
|
1683 |
+
"order": null,
|
1684 |
+
"overflow": null,
|
1685 |
+
"overflow_x": null,
|
1686 |
+
"overflow_y": null,
|
1687 |
+
"padding": null,
|
1688 |
+
"right": null,
|
1689 |
+
"top": null,
|
1690 |
+
"visibility": null,
|
1691 |
+
"width": null
|
1692 |
+
}
|
1693 |
+
},
|
1694 |
+
"40ae1be859d74847b4f0944c4027e1cf": {
|
1695 |
+
"model_module": "@jupyter-widgets/controls",
|
1696 |
+
"model_name": "DescriptionStyleModel",
|
1697 |
+
"model_module_version": "1.5.0",
|
1698 |
+
"state": {
|
1699 |
+
"_model_module": "@jupyter-widgets/controls",
|
1700 |
+
"_model_module_version": "1.5.0",
|
1701 |
+
"_model_name": "DescriptionStyleModel",
|
1702 |
+
"_view_count": null,
|
1703 |
+
"_view_module": "@jupyter-widgets/base",
|
1704 |
+
"_view_module_version": "1.2.0",
|
1705 |
+
"_view_name": "StyleView",
|
1706 |
+
"description_width": ""
|
1707 |
+
}
|
1708 |
+
}
|
1709 |
+
}
|
1710 |
+
}
|
1711 |
+
},
|
1712 |
+
"nbformat": 4,
|
1713 |
+
"nbformat_minor": 5
|
1714 |
+
}
|