|
|
|
|
|
from transformers.models.llama.modeling_llama import * |
|
from torch import nn |
|
import torch |
|
from .configuration_switchllama import SwitchLlamaConfig |
|
|
|
|
|
def router_z_loss_func(router_logits: torch.Tensor) -> float: |
|
r""" |
|
Compute the router z-loss implemented in PyTorch. |
|
|
|
The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). |
|
It encourages router logits to remain small in an effort to improve stability. |
|
|
|
Args: |
|
router_logits (`float`): |
|
Input logits of shape [batch_size, sequence_length, num_experts] |
|
|
|
Returns: |
|
Scalar router z-loss. |
|
""" |
|
num_groups, tokens_per_group, _ = router_logits.shape |
|
log_z = torch.logsumexp(router_logits, dim=-1) |
|
z_loss = log_z**2 |
|
return torch.sum(z_loss) / (num_groups * tokens_per_group) |
|
|
|
|
|
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
router_probs (`torch.Tensor`): |
|
Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. |
|
expert_indices (`torch.Tensor`): |
|
Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
num_experts = router_probs.shape[-1] |
|
|
|
|
|
if expert_indices.dtype != torch.int64: |
|
expert_indices = expert_indices.to(torch.int64) |
|
|
|
if len(expert_indices.shape) == 2: |
|
expert_indices = expert_indices.unsqueeze(2) |
|
|
|
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) |
|
|
|
|
|
expert_mask = torch.max(expert_mask, axis=-2).values |
|
|
|
|
|
expert_mask = expert_mask.to(torch.float32) |
|
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) |
|
|
|
router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) |
|
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
|
|
class SwitchLlamaTop1Router(nn.Module): |
|
""" |
|
Router using tokens choose top-1 experts assignment. |
|
|
|
This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE |
|
(https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then |
|
routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each |
|
token is processed by an expert**, or that each expert receives at least one token. |
|
|
|
""" |
|
|
|
def __init__(self, config: SwitchLlamaConfig): |
|
super().__init__() |
|
self.num_experts = config.num_experts |
|
self.expert_capacity = config.expert_capacity |
|
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) |
|
self.jitter_noise = config.router_jitter_noise |
|
self.ignore_padding_tokens = config.router_ignore_padding_tokens |
|
|
|
def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Computes router probabilities from input hidden states. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed. |
|
Returns: |
|
router_probabilities (`torch.Tensor`): |
|
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each |
|
token and expert. Used for routing tokens to experts. |
|
router_logits (`torch.Tensor`): |
|
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. |
|
This is used later for computing router z-loss. |
|
""" |
|
if self.jitter_noise > 0: |
|
|
|
|
|
distrib_lower_bound = 1.0 - self.jitter_noise |
|
distrib_upper_bound = 1.0 + self.jitter_noise |
|
|
|
uniform_distrib = torch.rand(hidden_states.shape, device=hidden_states.device, dtype=hidden_states.dtype) |
|
uniform_distrib = uniform_distrib * (distrib_lower_bound - distrib_upper_bound) |
|
|
|
uniform_distrib = uniform_distrib + distrib_upper_bound |
|
|
|
hidden_states *= uniform_distrib |
|
|
|
|
|
router_logits = self.classifier(hidden_states) |
|
|
|
|
|
router_probabilities = nn.functional.softmax(router_logits, dim=-1) |
|
return router_probabilities, router_logits |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple: |
|
r""" |
|
Generic forward function for every Router class. Each Router expects to have the same input hidden states |
|
(`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the |
|
number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. |
|
|
|
Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and |
|
`router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned |
|
to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`) : |
|
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts. |
|
Returns: |
|
Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs |
|
and the router logits. The router probabilities and logits are required to compute the loss. |
|
""" |
|
router_probs, router_logits = self._compute_router_probabilities(hidden_states) |
|
|
|
expert_index = torch.argmax(router_probs, dim=-1) |
|
expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) |
|
|
|
|
|
token_priority = torch.cumsum(expert_index, dim=-2) |
|
|
|
expert_capacity_mask = token_priority <= self.expert_capacity |
|
expert_index = expert_index * expert_capacity_mask |
|
|
|
router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) |
|
return expert_index, router_probs, router_logits |
|
|
|
class SwitchLlamaSparseMLP(nn.Module): |
|
r""" |
|
Implementation of the Switch Transformers Sparse MLP module. |
|
""" |
|
|
|
def __init__(self, config: SwitchLlamaConfig, expert_class: nn.Module = LlamaMLP): |
|
super().__init__() |
|
|
|
self.router = SwitchLlamaTop1Router(config) |
|
|
|
|
|
self.experts = nn.ModuleDict() |
|
for idx in range(config.num_experts): |
|
self.experts[f"expert_{idx}"] = expert_class(config) |
|
|
|
def forward(self, hidden_states): |
|
r""" |
|
Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: |
|
|
|
1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` |
|
and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the |
|
hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). |
|
|
|
2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each |
|
expert the corresponding hidden states. |
|
|
|
""" |
|
|
|
router_mask, router_probs, router_logits = self.router(hidden_states) |
|
expert_index = torch.argmax(router_mask, dim=-1) |
|
|
|
|
|
|
|
|
|
next_states = hidden_states.clone() |
|
for idx, expert in enumerate(self.experts.values()): |
|
token_indices = router_mask[:, :, idx].bool() |
|
next_states[token_indices] = expert(hidden_states[token_indices]) |
|
|
|
hidden_states = router_probs * next_states |
|
return hidden_states, (router_logits, expert_index) |
|
|
|
class SwitchLlamaLayerFF(nn.Module): |
|
r""" |
|
Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. |
|
|
|
Parameters: |
|
config : ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
is_sparse (`bool`): |
|
Whether the MLP layer is a `Sparse` layer (contains a Mixture of Experts) or not |
|
""" |
|
|
|
def __init__(self, config: SwitchLlamaConfig, is_sparse=True): |
|
super().__init__() |
|
self.is_sparse = is_sparse |
|
|
|
|
|
if not self.is_sparse: |
|
self.mlp = LlamaMLP(config) |
|
else: |
|
self.mlp = SwitchLlamaSparseMLP(config) |
|
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states, output_router_logits=False): |
|
|
|
forwarded_states = self.mlp(hidden_states) |
|
|
|
if isinstance(forwarded_states, tuple): |
|
forwarded_states, router_tuple = forwarded_states |
|
else: |
|
router_tuple = None |
|
|
|
output = hidden_states + self.dropout(forwarded_states) |
|
|
|
if output_router_logits and router_tuple is not None: |
|
output = (output, router_tuple) |
|
|
|
return output |
|
|
|
class SwitchLlamaDecoderLayer(nn.Module): |
|
def __init__(self, config: SwitchLlamaConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = LlamaAttention(config=config) |
|
self.mlp = SwitchLlamaLayerFF(config) |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
output_router_logits = True |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states, output_router_logits=output_router_logits) |
|
if type(hidden_states)==tuple: |
|
hidden_states, router_tuple = hidden_states |
|
else: |
|
router_tuple = (torch.tensor([0], device=hidden_states.device),) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
|
|
|
|
return outputs + (router_tuple,) |
|
|
|
class SwitchLlamaPreTrainedModel(PreTrainedModel): |
|
config_class = SwitchLlamaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SwitchLlamaDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, LlamaModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class SwitchLlamaModel(SwitchLlamaPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] |
|
|
|
Args: |
|
config: SwitchLlamaConfig |
|
""" |
|
|
|
def __init__(self, config: SwitchLlamaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([SwitchLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
output_router_logits = False |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
all_router_probs = () if output_router_logits else None |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, past_key_value, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
output_router_logits=output_router_logits |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
router_probs = layer_outputs[-1] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if output_router_logits: |
|
all_router_probs = all_router_probs + (router_probs,) |
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
from transformers.models.switch_transformers.modeling_switch_transformers import MoEModelOutputWithPastAndCrossAttentions |
|
return MoEModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_probs=all_router_probs, |
|
) |
|
|
|
class SwitchLlamaForCausalLM(SwitchLlamaPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = SwitchLlamaModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.router_z_loss_coef = config.router_z_loss_coef |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
|
|
self.post_init() |
|
def _unpack_router_logits(self, router_outputs): |
|
total_router_logits = [] |
|
total_expert_indexes = [] |
|
for router_output in router_outputs: |
|
if len(router_output[0].shape) > 1: |
|
router_logits, expert_indexes = router_output |
|
total_router_logits.append(router_logits) |
|
total_expert_indexes.append(expert_indexes) |
|
return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1) |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
output_router_logits = False, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
output_router_logits=output_router_logits |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if self.config.pretraining_tp > 1: |
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) |
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] |
|
logits = torch.cat(logits, dim=-1) |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
decoder_z_loss = None |
|
decoder_aux_loss = None |
|
|
|
if output_router_logits: |
|
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(outputs[-1]) |
|
decoder_z_loss = router_z_loss_func(decoder_router_logits) |
|
decoder_router_probs = nn.Softmax(dim=-1)(decoder_router_logits) |
|
decoder_aux_loss = load_balancing_loss_func(decoder_router_probs, decoder_expert_indexes) |
|
|
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if output_router_logits: |
|
z_loss = self.router_z_loss_coef * decoder_z_loss |
|
aux_loss = self.router_aux_loss_coef * decoder_aux_loss |
|
loss = loss + z_loss + aux_loss |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |