|
from typing import List |
|
from queue import Queue |
|
|
|
import torch |
|
|
|
|
|
def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0): |
|
def _parse_messages(messages, split_role="user"): |
|
system, rounds = "", [] |
|
round = [] |
|
for i, message in enumerate(messages): |
|
if message["role"] == "system": |
|
assert i == 0 |
|
system = message["content"] |
|
continue |
|
if message["role"] == split_role and round: |
|
rounds.append(round) |
|
round = [] |
|
round.append(message) |
|
if round: |
|
rounds.append(round) |
|
return system, rounds |
|
|
|
max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens |
|
max_input_tokens = model.config.model_max_length - max_new_tokens |
|
system, rounds = _parse_messages(messages, split_role="user") |
|
system_tokens = tokenizer.encode(system) |
|
max_history_tokens = max_input_tokens - len(system_tokens) |
|
|
|
history_tokens = [] |
|
for round in rounds[::-1]: |
|
round_tokens = [] |
|
for message in round: |
|
if message["role"] == "user": |
|
if message.get('context', None): |
|
round_tokens.extend([197] + tokenizer.encode(message["context"])) |
|
round_tokens.append(model.generation_config.user_token_id) |
|
else: |
|
round_tokens.append(model.generation_config.assistant_token_id) |
|
round_tokens.extend(tokenizer.encode(message["content"])) |
|
if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens: |
|
history_tokens = round_tokens + history_tokens |
|
if len(history_tokens) < max_history_tokens: |
|
continue |
|
break |
|
|
|
input_tokens = system_tokens + history_tokens |
|
if messages[-1]["role"] != "assistant": |
|
input_tokens.append(model.generation_config.assistant_token_id) |
|
input_tokens = input_tokens[-max_input_tokens:] |
|
return torch.LongTensor([input_tokens]).to(model.device) |
|
|
|
|
|
class TextIterStreamer: |
|
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False): |
|
self.tokenizer = tokenizer |
|
self.skip_prompt = skip_prompt |
|
self.skip_special_tokens = skip_special_tokens |
|
self.tokens = [] |
|
self.text_queue = Queue() |
|
self.next_tokens_are_prompt = True |
|
|
|
def put(self, value): |
|
if self.skip_prompt and self.next_tokens_are_prompt: |
|
self.next_tokens_are_prompt = False |
|
else: |
|
if len(value.shape) > 1: |
|
value = value[0] |
|
self.tokens.extend(value.tolist()) |
|
self.text_queue.put( |
|
self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens)) |
|
|
|
def end(self): |
|
self.text_queue.put(None) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
value = self.text_queue.get() |
|
if value is None: |
|
raise StopIteration() |
|
else: |
|
return value |
|
|
|
|