--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-combined-10hrs-model results: [] --- # mms-1b-bigcgen-combined-10hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.5167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.705 | 0.1528 | 100 | inf | 1.0004 | | 6.0879 | 0.3056 | 200 | inf | 1.0203 | | 5.4042 | 0.4584 | 300 | inf | 1.0160 | | 2.8156 | 0.6112 | 400 | inf | 0.6058 | | 1.9111 | 0.7639 | 500 | inf | 0.5724 | | 1.82 | 0.9167 | 600 | inf | 0.5643 | | 1.6294 | 1.0688 | 700 | inf | 0.5685 | | 1.6856 | 1.2215 | 800 | inf | 0.5530 | | 1.6363 | 1.3743 | 900 | inf | 0.5501 | | 1.5114 | 1.5271 | 1000 | inf | 0.5417 | | 1.5417 | 1.6799 | 1100 | inf | 0.5358 | | 1.6518 | 1.8327 | 1200 | inf | 0.5337 | | 1.4795 | 1.9855 | 1300 | inf | 0.5292 | | 1.5822 | 2.1375 | 1400 | inf | 0.5278 | | 1.4938 | 2.2903 | 1500 | inf | 0.5194 | | 1.5701 | 2.4431 | 1600 | inf | 0.5353 | | 1.47 | 2.5959 | 1700 | inf | 0.5183 | | 1.4109 | 2.7487 | 1800 | inf | 0.5342 | | 1.3993 | 2.9015 | 1900 | inf | 0.5175 | | 1.4848 | 3.0535 | 2000 | inf | 0.5177 | | 1.4331 | 3.2063 | 2100 | inf | 0.5286 | | 1.4392 | 3.3591 | 2200 | inf | 0.5213 | | 1.3324 | 3.5118 | 2300 | inf | 0.5161 | | 1.501 | 3.6646 | 2400 | inf | 0.5160 | | 1.3526 | 3.8174 | 2500 | inf | 0.5163 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0