--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-combined-20hrs-model results: [] --- # mms-1b-bigcgen-combined-20hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.5166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.8448 | 0.0762 | 100 | inf | 1.0079 | | 6.2506 | 0.1524 | 200 | inf | 1.0042 | | 5.5314 | 0.2287 | 300 | inf | 1.0270 | | 3.4418 | 0.3049 | 400 | inf | 0.5906 | | 1.9396 | 0.3811 | 500 | inf | 0.5762 | | 1.698 | 0.4573 | 600 | inf | 0.5566 | | 1.5483 | 0.5335 | 700 | inf | 0.5571 | | 1.6501 | 0.6098 | 800 | inf | 0.5487 | | 1.5528 | 0.6860 | 900 | inf | 0.5471 | | 1.5398 | 0.7622 | 1000 | inf | 0.5479 | | 1.6413 | 0.8384 | 1100 | inf | 0.5304 | | 1.418 | 0.9146 | 1200 | inf | 0.5283 | | 1.5625 | 0.9909 | 1300 | inf | 0.5265 | | 1.4753 | 1.0671 | 1400 | inf | 0.5347 | | 1.616 | 1.1433 | 1500 | inf | 0.5309 | | 1.3802 | 1.2195 | 1600 | inf | 0.5246 | | 1.4105 | 1.2957 | 1700 | inf | 0.5197 | | 1.3793 | 1.3720 | 1800 | inf | 0.5288 | | 1.3991 | 1.4482 | 1900 | inf | 0.5140 | | 1.5838 | 1.5244 | 2000 | inf | 0.5239 | | 1.6283 | 1.6006 | 2100 | inf | 0.5144 | | 1.4131 | 1.6768 | 2200 | inf | 0.5135 | | 1.388 | 1.7530 | 2300 | inf | 0.5137 | | 1.3846 | 1.8293 | 2400 | inf | 0.5145 | | 1.497 | 1.9055 | 2500 | inf | 0.5167 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0