File size: 3,133 Bytes
6c13d60 b5ab886 6c13d60 b5ab886 6c13d60 b5ab886 6c13d60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- bigcgen
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-bigcgen-combined-25hrs-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mms-1b-bigcgen-combined-25hrs-model
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.5156
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 14.5485 | 0.0611 | 100 | inf | 1.0039 |
| 6.1502 | 0.1222 | 200 | inf | 1.0675 |
| 5.1685 | 0.1833 | 300 | inf | 1.0053 |
| 2.0876 | 0.2443 | 400 | inf | 0.5857 |
| 1.7116 | 0.3054 | 500 | inf | 0.5759 |
| 1.6505 | 0.3665 | 600 | inf | 0.5579 |
| 1.6573 | 0.4276 | 700 | inf | 0.5471 |
| 1.4679 | 0.4887 | 800 | inf | 0.5528 |
| 1.4955 | 0.5498 | 900 | inf | 0.5369 |
| 1.664 | 0.6109 | 1000 | inf | 0.5328 |
| 1.61 | 0.6720 | 1100 | inf | 0.5335 |
| 1.6414 | 0.7330 | 1200 | inf | 0.5293 |
| 1.6321 | 0.7941 | 1300 | inf | 0.5271 |
| 1.4686 | 0.8552 | 1400 | inf | 0.5297 |
| 1.5073 | 0.9163 | 1500 | inf | 0.5326 |
| 1.6164 | 0.9774 | 1600 | inf | 0.5235 |
| 1.577 | 1.0385 | 1700 | inf | 0.5238 |
| 1.383 | 1.0996 | 1800 | inf | 0.5217 |
| 1.4391 | 1.1607 | 1900 | inf | 0.5292 |
| 1.5327 | 1.2217 | 2000 | inf | 0.5255 |
| 1.3653 | 1.2828 | 2100 | inf | 0.5195 |
| 1.4901 | 1.3439 | 2200 | inf | 0.5187 |
| 1.4263 | 1.4050 | 2300 | inf | 0.5169 |
| 1.4603 | 1.4661 | 2400 | inf | 0.5179 |
| 1.4802 | 1.5272 | 2500 | inf | 0.5155 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|