--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - bigcgen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bigcgen-combined-25hrs-model results: [] --- # mms-1b-bigcgen-combined-25hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.5156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.5485 | 0.0611 | 100 | inf | 1.0039 | | 6.1502 | 0.1222 | 200 | inf | 1.0675 | | 5.1685 | 0.1833 | 300 | inf | 1.0053 | | 2.0876 | 0.2443 | 400 | inf | 0.5857 | | 1.7116 | 0.3054 | 500 | inf | 0.5759 | | 1.6505 | 0.3665 | 600 | inf | 0.5579 | | 1.6573 | 0.4276 | 700 | inf | 0.5471 | | 1.4679 | 0.4887 | 800 | inf | 0.5528 | | 1.4955 | 0.5498 | 900 | inf | 0.5369 | | 1.664 | 0.6109 | 1000 | inf | 0.5328 | | 1.61 | 0.6720 | 1100 | inf | 0.5335 | | 1.6414 | 0.7330 | 1200 | inf | 0.5293 | | 1.6321 | 0.7941 | 1300 | inf | 0.5271 | | 1.4686 | 0.8552 | 1400 | inf | 0.5297 | | 1.5073 | 0.9163 | 1500 | inf | 0.5326 | | 1.6164 | 0.9774 | 1600 | inf | 0.5235 | | 1.577 | 1.0385 | 1700 | inf | 0.5238 | | 1.383 | 1.0996 | 1800 | inf | 0.5217 | | 1.4391 | 1.1607 | 1900 | inf | 0.5292 | | 1.5327 | 1.2217 | 2000 | inf | 0.5255 | | 1.3653 | 1.2828 | 2100 | inf | 0.5195 | | 1.4901 | 1.3439 | 2200 | inf | 0.5187 | | 1.4263 | 1.4050 | 2300 | inf | 0.5169 | | 1.4603 | 1.4661 | 2400 | inf | 0.5179 | | 1.4802 | 1.5272 | 2500 | inf | 0.5155 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0