--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-swagen-combined-30hrs-model results: [] --- # mms-1b-swagen-combined-30hrs-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.2278 - Wer: 0.1922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 16.9208 | 0.0399 | 100 | 4.2681 | 0.9999 | | 7.2021 | 0.0798 | 200 | 3.4068 | 1.0027 | | 6.725 | 0.1196 | 300 | 3.1580 | 1.0146 | | 6.2214 | 0.1595 | 400 | 3.0439 | 1.0027 | | 5.9996 | 0.1994 | 500 | 3.0050 | 1.0016 | | 5.8133 | 0.2393 | 600 | 2.9415 | 1.0 | | 5.805 | 0.2792 | 700 | 2.8951 | 0.9997 | | 5.7621 | 0.3190 | 800 | 2.9054 | 0.9996 | | 5.6973 | 0.3589 | 900 | 2.8109 | 0.9909 | | 5.6541 | 0.3988 | 1000 | 2.8355 | 0.9911 | | 5.4159 | 0.4387 | 1100 | 2.7632 | 0.9783 | | 5.4112 | 0.4786 | 1200 | 2.6499 | 0.9793 | | 4.2059 | 0.5184 | 1300 | 0.3675 | 0.2617 | | 0.6493 | 0.5583 | 1400 | 0.2747 | 0.2077 | | 0.5624 | 0.5982 | 1500 | 0.2649 | 0.2023 | | 0.5197 | 0.6381 | 1600 | 0.2619 | 0.1988 | | 0.4715 | 0.6780 | 1700 | 0.2589 | 0.1982 | | 0.5126 | 0.7178 | 1800 | 0.2518 | 0.1979 | | 0.4916 | 0.7577 | 1900 | 0.2549 | 0.1958 | | 0.4667 | 0.7976 | 2000 | 0.2501 | 0.1947 | | 0.4713 | 0.8375 | 2100 | 0.2479 | 0.1943 | | 0.4875 | 0.8774 | 2200 | 0.2449 | 0.1931 | | 0.4611 | 0.9172 | 2300 | 0.2436 | 0.1935 | | 0.4587 | 0.9571 | 2400 | 0.2434 | 0.1928 | | 0.4679 | 0.9970 | 2500 | 0.2409 | 0.1895 | | 0.4141 | 1.0367 | 2600 | 0.2331 | 0.1896 | | 0.4263 | 1.0766 | 2700 | 0.2329 | 0.1920 | | 0.4142 | 1.1165 | 2800 | 0.2324 | 0.1918 | | 0.4606 | 1.1563 | 2900 | 0.2257 | 0.1943 | | 0.4048 | 1.1962 | 3000 | 0.2289 | 0.1928 | | 0.4172 | 1.2361 | 3100 | 0.2326 | 0.1938 | | 0.4294 | 1.2760 | 3200 | 0.2327 | 0.1941 | | 0.468 | 1.3159 | 3300 | 0.2277 | 0.1922 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0