--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - toigen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-toigen-female-model results: [] --- # mms-1b-toigen-female-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the TOIGEN - TOI dataset. It achieves the following results on the evaluation set: - Loss: 0.2197 - Wer: 0.3590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 6.8474 | 0.4016 | 100 | 3.6385 | 0.9952 | | 2.2373 | 0.8032 | 200 | 0.5181 | 0.6290 | | 0.6093 | 1.2048 | 300 | 0.3649 | 0.5187 | | 0.4813 | 1.6064 | 400 | 0.3151 | 0.4909 | | 0.3843 | 2.0080 | 500 | 0.2994 | 0.4567 | | 0.3805 | 2.4096 | 600 | 0.2818 | 0.4423 | | 0.3591 | 2.8112 | 700 | 0.2811 | 0.4402 | | 0.3164 | 3.2129 | 800 | 0.2688 | 0.4105 | | 0.3351 | 3.6145 | 900 | 0.2569 | 0.4060 | | 0.3442 | 4.0161 | 1000 | 0.2639 | 0.4 | | 0.2996 | 4.4177 | 1100 | 0.2581 | 0.4085 | | 0.3196 | 4.8193 | 1200 | 0.2444 | 0.3863 | | 0.3147 | 5.2209 | 1300 | 0.2450 | 0.3863 | | 0.2936 | 5.6225 | 1400 | 0.2414 | 0.3855 | | 0.2894 | 6.0241 | 1500 | 0.2363 | 0.3722 | | 0.2772 | 6.4257 | 1600 | 0.2452 | 0.3843 | | 0.2565 | 6.8273 | 1700 | 0.2357 | 0.3759 | | 0.3033 | 7.2289 | 1800 | 0.2358 | 0.3787 | | 0.2651 | 7.6305 | 1900 | 0.2349 | 0.3634 | | 0.2912 | 8.0321 | 2000 | 0.2305 | 0.3658 | | 0.2554 | 8.4337 | 2100 | 0.2303 | 0.3678 | | 0.2535 | 8.8353 | 2200 | 0.2269 | 0.3553 | | 0.2368 | 9.2369 | 2300 | 0.2288 | 0.3610 | | 0.2491 | 9.6386 | 2400 | 0.2244 | 0.3686 | | 0.2678 | 10.0402 | 2500 | 0.2289 | 0.3561 | | 0.2247 | 10.4418 | 2600 | 0.2234 | 0.3614 | | 0.2773 | 10.8434 | 2700 | 0.2248 | 0.3541 | | 0.2162 | 11.2450 | 2800 | 0.2197 | 0.3590 | | 0.2526 | 11.6466 | 2900 | 0.2208 | 0.3521 | | 0.2521 | 12.0482 | 3000 | 0.2230 | 0.3702 | | 0.2218 | 12.4498 | 3100 | 0.2208 | 0.3529 | | 0.2419 | 12.8514 | 3200 | 0.2204 | 0.3517 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0