File size: 2,484 Bytes
e1f7feb fed14b2 e1f7feb fed14b2 e1f7feb fed14b2 e1f7feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- bigcgen
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bigcgen-combined-5hrs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-1b-bigcgen-combined-5hrs
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BIGCGEN - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6944
- Wer: 0.6601
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.4228 | 100 | 3.7787 | 1.0 |
| No log | 0.8457 | 200 | 2.8642 | 1.0 |
| No log | 1.2664 | 300 | 1.1326 | 0.9986 |
| No log | 1.6892 | 400 | 0.8747 | 0.8281 |
| 5.818 | 2.1099 | 500 | 0.7865 | 0.8027 |
| 5.818 | 2.5328 | 600 | 0.6710 | 0.6954 |
| 5.818 | 2.9556 | 700 | 0.7234 | 0.7939 |
| 5.818 | 3.3763 | 800 | 0.6657 | 0.6706 |
| 5.818 | 3.7992 | 900 | 0.6836 | 0.7246 |
| 1.2021 | 4.2199 | 1000 | 0.6894 | 0.6897 |
| 1.2021 | 4.6427 | 1100 | 0.6464 | 0.6642 |
| 1.2021 | 5.0634 | 1200 | 0.6663 | 0.6777 |
| 1.2021 | 5.4863 | 1300 | 0.6701 | 0.6704 |
| 1.2021 | 5.9091 | 1400 | 0.6834 | 0.6899 |
| 0.8307 | 6.3298 | 1500 | 0.6944 | 0.6600 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|