File size: 6,145 Bytes
7311402
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b37d3
7311402
a371b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7311402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
tags:
- merge
- mergekit
- lazymergekit
- yleo/EmertonMonarch-7B
base_model:
- yleo/EmertonMonarch-7B
---

# Spaetzle-v31-7b

Spaetzle-v31-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [yleo/EmertonMonarch-7B](https://huggingface.co/yleo/EmertonMonarch-7B)
* [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b)

|                            Model                             |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v31-7b](https://huggingface.co/cstr/Spaetzle-v31-7b)|  46.23|   76.6|     69.58|   46.79|   59.8|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |28.74|±  |  2.85|
|                              |       |acc_norm|27.56|±  |  2.81|
|agieval_logiqa_en             |      0|acc     |39.63|±  |  1.92|
|                              |       |acc_norm|40.25|±  |  1.92|
|agieval_lsat_ar               |      0|acc     |24.35|±  |  2.84|
|                              |       |acc_norm|24.35|±  |  2.84|
|agieval_lsat_lr               |      0|acc     |54.31|±  |  2.21|
|                              |       |acc_norm|54.12|±  |  2.21|
|agieval_lsat_rc               |      0|acc     |65.80|±  |  2.90|
|                              |       |acc_norm|66.54|±  |  2.88|
|agieval_sat_en                |      0|acc     |79.13|±  |  2.84|
|                              |       |acc_norm|79.61|±  |  2.81|
|agieval_sat_en_without_passage|      0|acc     |46.12|±  |  3.48|
|                              |       |acc_norm|45.15|±  |  3.48|
|agieval_sat_math              |      0|acc     |35.00|±  |  3.22|
|                              |       |acc_norm|32.27|±  |  3.16|

Average: 46.23%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |64.76|±  |  1.40|
|             |       |acc_norm|66.89|±  |  1.38|
|arc_easy     |      0|acc     |86.66|±  |  0.70|
|             |       |acc_norm|82.83|±  |  0.77|
|boolq        |      1|acc     |87.80|±  |  0.57|
|hellaswag    |      0|acc     |67.43|±  |  0.47|
|             |       |acc_norm|85.85|±  |  0.35|
|openbookqa   |      0|acc     |38.00|±  |  2.17|
|             |       |acc_norm|48.80|±  |  2.24|
|piqa         |      0|acc     |83.57|±  |  0.86|
|             |       |acc_norm|84.71|±  |  0.84|
|winogrande   |      0|acc     |79.32|±  |  1.14|

Average: 76.6%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |53.37|±  |  1.75|
|             |       |mc2   |69.58|±  |  1.48|

Average: 69.58%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|56.84|±  |  3.60|
|bigbench_date_understanding                     |      0|multiple_choice_grade|66.94|±  |  2.45|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|44.57|±  |  3.10|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|21.17|±  |  2.16|
|                                                |       |exact_str_match      | 0.28|±  |  0.28|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|31.80|±  |  2.08|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|22.57|±  |  1.58|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|56.00|±  |  2.87|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|45.40|±  |  2.23|
|bigbench_navigate                               |      0|multiple_choice_grade|52.80|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|70.65|±  |  1.02|
|bigbench_ruin_names                             |      0|multiple_choice_grade|50.67|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|30.66|±  |  1.46|
|bigbench_snarks                                 |      0|multiple_choice_grade|71.27|±  |  3.37|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|74.34|±  |  1.39|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|49.80|±  |  1.58|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|22.16|±  |  1.18|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|18.57|±  |  0.93|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|56.00|±  |  2.87|

Average: 46.79%

Average score: 59.8%

Elapsed time: 02:09:50

## 🧩 Configuration

```yaml
models:
  - model: cstr/spaetzle-v8-7b
    # no parameters necessary for base model
  - model: yleo/EmertonMonarch-7B
    parameters:
      density: 0.60
      weight: 0.3
merge_method: dare_ties
base_model: cstr/spaetzle-v8-7b
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v31-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```