File size: 6,145 Bytes
7311402 b6b37d3 7311402 a371b16 7311402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
tags:
- merge
- mergekit
- lazymergekit
- yleo/EmertonMonarch-7B
base_model:
- yleo/EmertonMonarch-7B
---
# Spaetzle-v31-7b
Spaetzle-v31-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [yleo/EmertonMonarch-7B](https://huggingface.co/yleo/EmertonMonarch-7B)
* [cstr/spaetzle-v8-7b](https://huggingface.co/cstr/spaetzle-v8-7b)
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v31-7b](https://huggingface.co/cstr/Spaetzle-v31-7b)| 46.23| 76.6| 69.58| 46.79| 59.8|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |28.74|± | 2.85|
| | |acc_norm|27.56|± | 2.81|
|agieval_logiqa_en | 0|acc |39.63|± | 1.92|
| | |acc_norm|40.25|± | 1.92|
|agieval_lsat_ar | 0|acc |24.35|± | 2.84|
| | |acc_norm|24.35|± | 2.84|
|agieval_lsat_lr | 0|acc |54.31|± | 2.21|
| | |acc_norm|54.12|± | 2.21|
|agieval_lsat_rc | 0|acc |65.80|± | 2.90|
| | |acc_norm|66.54|± | 2.88|
|agieval_sat_en | 0|acc |79.13|± | 2.84|
| | |acc_norm|79.61|± | 2.81|
|agieval_sat_en_without_passage| 0|acc |46.12|± | 3.48|
| | |acc_norm|45.15|± | 3.48|
|agieval_sat_math | 0|acc |35.00|± | 3.22|
| | |acc_norm|32.27|± | 3.16|
Average: 46.23%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |64.76|± | 1.40|
| | |acc_norm|66.89|± | 1.38|
|arc_easy | 0|acc |86.66|± | 0.70|
| | |acc_norm|82.83|± | 0.77|
|boolq | 1|acc |87.80|± | 0.57|
|hellaswag | 0|acc |67.43|± | 0.47|
| | |acc_norm|85.85|± | 0.35|
|openbookqa | 0|acc |38.00|± | 2.17|
| | |acc_norm|48.80|± | 2.24|
|piqa | 0|acc |83.57|± | 0.86|
| | |acc_norm|84.71|± | 0.84|
|winogrande | 0|acc |79.32|± | 1.14|
Average: 76.6%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |53.37|± | 1.75|
| | |mc2 |69.58|± | 1.48|
Average: 69.58%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.84|± | 3.60|
|bigbench_date_understanding | 0|multiple_choice_grade|66.94|± | 2.45|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|44.57|± | 3.10|
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.17|± | 2.16|
| | |exact_str_match | 0.28|± | 0.28|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|31.80|± | 2.08|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|22.57|± | 1.58|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|56.00|± | 2.87|
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.40|± | 2.23|
|bigbench_navigate | 0|multiple_choice_grade|52.80|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|70.65|± | 1.02|
|bigbench_ruin_names | 0|multiple_choice_grade|50.67|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|30.66|± | 1.46|
|bigbench_snarks | 0|multiple_choice_grade|71.27|± | 3.37|
|bigbench_sports_understanding | 0|multiple_choice_grade|74.34|± | 1.39|
|bigbench_temporal_sequences | 0|multiple_choice_grade|49.80|± | 1.58|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.16|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.57|± | 0.93|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|56.00|± | 2.87|
Average: 46.79%
Average score: 59.8%
Elapsed time: 02:09:50
## 🧩 Configuration
```yaml
models:
- model: cstr/spaetzle-v8-7b
# no parameters necessary for base model
- model: yleo/EmertonMonarch-7B
parameters:
density: 0.60
weight: 0.3
merge_method: dare_ties
base_model: cstr/spaetzle-v8-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v31-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |