--- base_model: - Dampfinchen/Llama-3.1-8B-Ultra-Instruct tags: - merge - mergekit - Undi95/Meta-Llama-3.1-8B-Claude - Dampfinchen/Llama-3.1-8B-Ultra-Instruct license: llama3.1 language: - en - de --- # llama3.1-8b-spaetzle-v59 llama3.1-8b-spaetzle-v59 is a dare ties merge of the models * [Undi95/Meta-Llama-3.1-8B-Claude](https://huggingface.co/Undi95/Meta-Llama-3.1-8B-Claude) * [Dampfinchen/Llama-3.1-8B-Ultra-Instruct](https://huggingface.co/Dampfinchen/Llama-3.1-8B-Ultra-Instruct) EQ-Bench v2_de: 67.38 (171/171) (which is not bad...) with q4 quants: [cstr/llama3.1-8b-spaetzle-v59-GGUF](https://huggingface.co/cstr/llama3.1-8b-spaetzle-v59-GGUF/) ## 🧩 Configuration ```yaml models: - model: Dampfinchen/Llama-3.1-8B-Ultra-Instruct # no parameters necessary for base model - model: Undi95/Meta-Llama-3.1-8B-Claude parameters: density: 0.65 weight: 0.4 merge_method: dare_ties base_model: Dampfinchen/Llama-3.1-8B-Ultra-Instruct parameters: int8_mask: true dtype: bfloat16 random_seed: 0 tokenizer_source: base ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "cstr/llama3.1-8b-spaetzle-v59" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```