#!/usr/bin/env python3 import os import re from pathlib import Path from typing import List BASE_URL = "https://huggingface.co/csukuangfj/sherpa-onnx-apk/resolve/main/" from dataclasses import dataclass @dataclass class APK: major: int minor: int patch: int arch: str short_name: str def __init__(self, s): # sherpa-onnx-1.9.23-arm64-v8a-vad_asr-en-whisper_tiny.apk # sherpa-onnx-1.9.23-x86-vad_asr-en-whisper_tiny.apk s = str(s)[len("vad-asr/") :] split = s.split("-") self.major, self.minor, self.patch = list(map(int, split[2].split("."))) self.arch = split[3] self.lang = split[5] self.short_name = split[6] if "arm" in s: self.arch += "-" + split[4] self.lang = split[6] self.short_name = split[7] if "armeabi" in self.arch: self.arch = "y" + self.arch if "arm64" in self.arch: self.arch = "z" + self.arch if "small" in self.short_name: self.short_name = "zzz" + self.short_name def sort_by_apk(x): x = APK(x) return (x.major, x.minor, x.patch, x.arch, x.lang, x.short_name) def generate_url(files: List[str]) -> List[str]: ans = [] base = BASE_URL for f in files: ans.append(base + str(f)) return ans def get_all_files(d: str, suffix: str) -> List[str]: ans = sorted(Path(d).glob(suffix), key=sort_by_apk, reverse=True) return list(map(lambda x: BASE_URL + str(x), ans)) def to_file(filename: str, files: List[str]): content = r"""
APK | Comment | VAD model | Non-streaming ASR model |
---|---|---|---|
sherpa-onnx-x.y.z-arm64-v8a-vad_asr-be_de_en_es_fr_hr_it_pl_ru_uk-fast_conformer_ctc_20k.apk | It supports 10 languages: Belarusian, German, English, Spanish, French, Croatian, Italian, Polish, Russian, and Ukrainian. It is converted from STT Multilingual FastConformer Hybrid Transducer-CTC Large P&C from NVIDIA/NeMo. Note that only the CTC branch is used. It is trained on ~20000 hours of data. | silero_vad.onnx | sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2 |
sherpa-onnx-x.y.z-armeabi-v7a-vad_asr-en_des_es_fr-fast_conformer_ctc_14288.apk | It supports 4 languages: German, English, Spanish, and French . It is converted from STT European FastConformer Hybrid Transducer-CTC Large P&C from NVIDIA/NeMo. Note that only the CTC branch is used. It is trained on 14288 hours of data. | silero_vad.onnx | sherpa-onnx-nemo-fast-conformer-transducer-en-de-es-fr-14288.tar.bz2 |
sherpa-onnx-x.y.z-arm64-v8a-vad_asr-es-fast_conformer_ctc_1424.apk | It supports only Spanish. It is converted from STT Es FastConformer Hybrid Transducer-CTC Large P&C from NVIDIA/NeMo. Note that only the CTC branch is used. It is trained on 1424 hours of data. | silero_vad.onnx | sherpa-onnx-nemo-fast-conformer-transducer-es-1424.tar.bz2 |
sherpa-onnx-x.y.z-arm64-v8a-vad_asr-en-fast_conformer_ctc_24500.apk | It supports only English. It is converted from STT En FastConformer Hybrid Transducer-CTC Large P&C from NVIDIA/NeMo. Note that only the CTC branch is used. It is trained on 8500 hours of data. | silero_vad.onnx | sherpa-onnx-nemo-fast-conformer-transducer-en-24500.tar.bz2 |
sherpa-onnx-x.y.z-arm64-v8a-vad_asr-zh-zipformer.apk | It supports only Chinese. | silero_vad.onnx | icefall-asr-zipformer-wenetspeech-20230615 |
sherpa-onnx-x.y.z-arm64-v8a-vad_asr-zh-paraformer.apk | It supports both Chinese and English. | silero_vad.onnx | sherpa-onnx-paraformer-zh-2023-03-28 |
sherpa-onnx-x.y.z-arm64-v8a-vad_asr-en-whisper_tiny.apk | It supports only English. | silero_vad.onnx | sherpa-onnx-whisper-tiny.en |