File size: 4,876 Bytes
5ec554b a275607 5ec554b a275607 5ec554b 84e9708 5ec554b 2e71e47 5ec554b d6a516e 5ec554b a275607 11788ff a275607 11788ff a275607 5ec554b 11788ff 5ec554b a275607 5ec554b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import os
from typing import Any, Dict
import onnx
import torch
from onnxruntime.quantization import QuantType, quantize_dynamic
from pyannote.audio import Model
from pyannote.audio.core.task import Problem, Resolution
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
@torch.no_grad()
def main():
# You can download ./pytorch_model.bin from
# https://hf-mirror.com/csukuangfj/pyannote-models/tree/main/segmentation-3.0
# or from
# https://huggingface.co/Revai/reverb-diarization-v1/tree/main
pt_filename = "./pytorch_model.bin"
model = Model.from_pretrained(pt_filename)
model.eval()
assert model.dimension == 7, model.dimension
print(model.specifications)
assert (
model.specifications.problem == Problem.MONO_LABEL_CLASSIFICATION
), model.specifications.problem
assert (
model.specifications.resolution == Resolution.FRAME
), model.specifications.resolution
assert model.specifications.duration == 10.0, model.specifications.duration
assert model.audio.sample_rate == 16000, model.audio.sample_rate
# (batch, num_channels, num_samples)
assert list(model.example_input_array.shape) == [
1,
1,
16000 * 10,
], model.example_input_array.shape
example_output = model(model.example_input_array)
# (batch, num_frames, num_classes)
# assert list(example_output.shape) == [1, 589, 7], example_output.shape
print(example_output.shape)
print(model.receptive_field.step)
print(model.receptive_field.duration)
print(model.receptive_field.step * 16000)
print(model.receptive_field.duration * 16000)
# assert model.receptive_field.step == 0.016875, model.receptive_field.step
# assert model.receptive_field.duration == 0.0619375, model.receptive_field.duration
# assert model.receptive_field.step * 16000 == 270, model.receptive_field.step * 16000
# assert model.receptive_field.duration * 16000 == 991, (
# model.receptive_field.duration * 16000
# )
opset_version = 14
filename = "model.onnx"
torch.onnx.export(
model,
model.example_input_array,
filename,
opset_version=opset_version,
input_names=["x"],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 2: "T"},
"y": {0: "N", 1: "T"},
},
)
sample_rate = model.audio.sample_rate
window_size = int(model.specifications.duration) * 16000
receptive_field_size = int(model.receptive_field.duration * 16000)
receptive_field_shift = int(model.receptive_field.step * 16000)
is_revai = os.getenv("SHERPA_ONNX_IS_REVAI", "")
if is_revai == "":
url_1 = "https://huggingface.co/pyannote/segmentation-3.0"
url_2 = "https://huggingface.co/csukuangfj/pyannote-models/tree/main/segmentation-3.0"
license_url = (
"https://huggingface.co/pyannote/segmentation-3.0/blob/main/LICENSE"
)
model_author = "pyannote-audio"
else:
url_1 = "https://huggingface.co/Revai/reverb-diarization-v1"
url_2 = "https://huggingface.co/csukuangfj/sherpa-onnx-reverb-diarization-v1"
license_url = (
"https://huggingface.co/Revai/reverb-diarization-v1/blob/main/LICENSE"
)
model_author = "Revai"
meta_data = {
"num_speakers": len(model.specifications.classes),
"powerset_max_classes": model.specifications.powerset_max_classes,
"num_classes": model.dimension,
"sample_rate": sample_rate,
"window_size": window_size,
"receptive_field_size": receptive_field_size,
"receptive_field_shift": receptive_field_shift,
"model_type": "pyannote-segmentation-3.0",
"version": "1",
"model_author": model_author,
"maintainer": "k2-fsa",
"url_1": url_1,
"url_2": url_2,
"license": license_url,
}
add_meta_data(filename=filename, meta_data=meta_data)
print("Generate int8 quantization models")
filename_int8 = "model.int8.onnx"
quantize_dynamic(
model_input=filename,
model_output=filename_int8,
weight_type=QuantType.QUInt8,
)
print(f"Saved to {filename} and {filename_int8}")
if __name__ == "__main__":
main()
|