ctl commited on
Commit
5d791b2
·
1 Parent(s): 61c2cc4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -23
README.md CHANGED
@@ -1,9 +1,78 @@
1
- Dataset: Common Voice zh-HK
2
- CER: 17.810267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- evaluation code
 
5
 
6
- ```python3
 
 
 
 
 
 
 
 
 
 
 
 
7
  import torch
8
  import torchaudio
9
  from datasets import load_dataset, load_metric
@@ -12,7 +81,7 @@ import re
12
  import argparse
13
 
14
  lang_id = "zh-HK"
15
- model_id = "./wav2vec2-large-xlsr-cantonese"
16
 
17
  parser = argparse.ArgumentParser(description='hanles checkpoint loading')
18
  parser.add_argument('--checkpoint', type=str, default=None)
@@ -59,27 +128,15 @@ result = test_dataset.map(evaluate, batched=True, batch_size=16)
59
  print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
60
  ```
61
 
62
- Character Error Rate implementation
63
 
64
- ```python3
 
 
65
  @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
66
  class CER(datasets.Metric):
67
  def _info(self):
68
- return datasets.MetricInfo(
69
- description=_DESCRIPTION,
70
- citation=_CITATION,
71
- inputs_description=_KWARGS_DESCRIPTION,
72
- features=datasets.Features(
73
- {
74
- "predictions": datasets.Value("string", id="sequence"),
75
- "references": datasets.Value("string", id="sequence"),
76
- }
77
- ),
78
- codebase_urls=["https://github.com/jitsi/jiwer/"],
79
- reference_urls=[
80
- "https://en.wikipedia.org/wiki/Word_error_rate",
81
- ],
82
- )
83
 
84
  def _compute(self, predictions, references):
85
  preds = [char for seq in predictions for char in list(seq)]
@@ -87,4 +144,12 @@ class CER(datasets.Metric):
87
  return wer(refs, preds)
88
  ```
89
 
90
- will post the training code later.
 
 
 
 
 
 
 
 
 
1
+ language: zh-HK
2
+ datasets:
3
+ - common_voice
4
+ metrics:
5
+ - cer
6
+ tags:
7
+ - audio
8
+ - automatic-speech-recognition
9
+ - speech
10
+ - xlsr-fine-tuning-week
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: wav2vec2-large-xlsr-cantonese
14
+ results:
15
+ - task:
16
+ name: Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice zh-HK
20
+ type: common_voice
21
+ args: zh-HK
22
+ metrics:
23
+ - name: Test CER
24
+ type: cer
25
+ value: 17.81
26
+ ---
27
+
28
+ # Wav2Vec2-Large-XLSR-53-Cantonese
29
+
30
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice](https://huggingface.co/datasets/common_voice).
31
+ When using this model, make sure that your speech input is sampled at 16kHz.
32
+
33
+ ## Usage
34
+
35
+ The model can be used directly (without a language model) as follows:
36
+
37
+ ```python
38
+ import torch
39
+ import torchaudio
40
+ from datasets import load_dataset
41
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
42
+
43
+ test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
44
+
45
+ processor = Wav2Vec2Processor.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
46
+ model = Wav2Vec2ForCTC.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
47
+
48
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
49
+
50
+ # Preprocessing the datasets.
51
+ # We need to read the aduio files as arrays
52
+ def speech_file_to_array_fn(batch):
53
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
54
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ return batch
56
+
57
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
+ with torch.no_grad():
61
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
+ predicted_ids = torch.argmax(logits, dim=-1)
64
+
65
+ print("Prediction:", processor.batch_decode(predicted_ids))
66
+ print("Reference:", test_dataset["sentence"][:2])
67
+ ```
68
+
69
+
70
+ ## Evaluation
71
+
72
+ The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
73
+
74
+
75
+ ```python
76
  import torch
77
  import torchaudio
78
  from datasets import load_dataset, load_metric
 
81
  import argparse
82
 
83
  lang_id = "zh-HK"
84
+ model_id = "ctl/wav2vec2-large-xlsr-cantonese"
85
 
86
  parser = argparse.ArgumentParser(description='hanles checkpoint loading')
87
  parser.add_argument('--checkpoint', type=str, default=None)
 
128
  print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
129
  ```
130
 
131
+ ### Character Error Rate implementation
132
 
133
+ Adapting code from [wer](https://github.com/huggingface/datasets/blob/master/metrics/wer/wer.py)
134
+
135
+ ```python
136
  @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
137
  class CER(datasets.Metric):
138
  def _info(self):
139
+ ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  def _compute(self, predictions, references):
142
  preds = [char for seq in predictions for char in list(seq)]
 
144
  return wer(refs, preds)
145
  ```
146
 
147
+
148
+ **Test Result**: 17.81 %
149
+
150
+
151
+ ## Training
152
+
153
+ The Common Voice `train`, `validation` were used for training.
154
+
155
+ The script used for training will be posted [here](https://github.com/chutaklee/CantoASR)