--- language: - cs - en - de - fr - tu - zh - es - ru - multilingual license: cc-by-sa-4.0 tags: - Summarization - abstractive summarization - mt5-base - Czech - text2text generation - text generation datasets: - Multilingual_large_dataset_(multilarge) - cnc/dm - xsum - mlsum - cnewsum - cnc - sumeczech metrics: - rouge - rougeraw - MemesCS --- # mt5-base-multilingual-summarization-multilarge-cs This model is a fine-tuned checkpoint of [google/mt5-base](https://huggingface.co/google/mt5-base) on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries. ## Task The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: ```'cs': '', 'en': '','de': '', 'es': '', 'fr': '', 'ru': '', 'tu': '', 'zh': ''``` #Usage ```python ## Configuration of summarization pipeline # def summ_config(): cfg = OrderedDict([ ## summarization model - checkpoint # ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs # ctu-aic/mt5-base-multilingual-summarization-multilarge-cs # ctu-aic/mbart25-multilingual-summarization-multilarge-cs ("model_name", "ctu-aic/mbart25-multilingual-summarization-multilarge-cs"), ## language of summarization task # language : string : cs, en, de, fr, es, tr, ru, zh ("language", "en"), ## generation method parameters in dictionary # ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.95), ("repetition_penalty", 1.23), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 128), ("min_length", 10), ])), #texts to summarize values = (list of strings, string, dataset) ("texts", [ "english text1 to summarize", "english text2 to summarize", ] ), #OPTIONAL: Target summaries values = (list of strings, string, None) ('golds', [ "target english text1", "target english text2", ]), #('golds', None), ]) return cfg cfg = summ_config() mSummarize = MultiSummarizer(**cfg) summaries,scores = mSummarize(**cfg) ``` ## Dataset Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set. ``` Train set: 3 464 563 docs Validation set: 121 260 docs ``` | Stats | fragment | | | avg document length | | avg summary length | | Documents | |-------------|----------|---------------------|--------------------|--------|---------|--------|--------|--------| | __dataset__ |__compression__ | __density__ | __coverage__ | __nsent__ | __nwords__ | __nsent__ | __nwords__ | __count__ | | cnc | 7.388 | 0.303 | 0.088 | 16.121 | 316.912 | 3.272 | 46.805 | 750K | | sumeczech | 11.769 | 0.471 | 0.115 | 27.857 | 415.711 | 2.765 | 38.644 | 1M | | cnndm | 13.688 | 2.983 | 0.538 | 32.783 | 676.026 | 4.134 | 54.036 | 300K | | xsum | 18.378 | 0.479 | 0.194 | 18.607 | 369.134 | 1.000 | 21.127 | 225K| | mlsum/tu | 8.666 | 5.418 | 0.461 | 14.271 | 214.496 | 1.793 | 25.675 | 274K | | mlsum/de | 24.741 | 8.235 | 0.469 | 32.544 | 539.653 | 1.951 | 23.077 | 243K| | mlsum/fr | 24.388 | 2.688 | 0.424 | 24.533 | 612.080 | 1.320 | 26.93 | 425K | | mlsum/es | 36.185 | 3.705 | 0.510 | 31.914 | 746.927 | 1.142 | 21.671 | 291K | | mlsum/ru | 78.909 | 1.194 | 0.246 | 62.141 | 948.079 | 1.012 | 11.976 | 27K| | cnewsum | 20.183 | 0.000 | 0.000 | 16.834 | 438.271 | 1.109 | 21.926 | 304K | #### Tokenization Truncation and padding were set to 512 tokens for the encoder (input text) and 128 for the decoder (summary). ## Training Trained based on cross-entropy loss. ``` Time: 3 days 20 hours Epochs: 1080K steps = 10 (from 10) GPUs: 4x NVIDIA A100-SXM4-40GB eloss: 2.462 - 1.797 tloss: 17.322 - 1.578 ``` ### ROUGE results per individual dataset test set: | ROUGE | ROUGE-1 | | | ROUGE-2 | | | ROUGE-L | | | |-----------|---------|---------|-----------|--------|--------|-----------|--------|--------|---------| | |Precision | Recall | Fscore | Precision | Recall | Fscore | Precision | Recall | Fscore | | cnc | 30.62 | 19.83 | 23.44 | 9.94 | 6.52 | 7.67 | 22.92 | 14.92 | 17.6 | | sumeczech | 27.57 | 17.6 | 20.85 | 8.12 | 5.23 | 6.17 | 20.84 | 13.38 | 15.81 | | cnndm | 43.83 | 37.73 | 39.34 | 20.81 | 17.82 | 18.6 | 31.8 | 27.42 | 28.55 | | xsum | 41.63 | 30.54 | 34.56 | 16.13 | 11.76 | 13.33 | 33.65 | 24.74 | 27.97 | | mlsum-tu- | 54.4 | 43.29 | 46.2 | 38.78 | 31.31 | 33.23 | 48.18 | 38.44 | 41 | | mlsum-de | 47.94 | 44.14 | 45.11 | 36.42 | 35.24 | 35.42 | 44.43 | 41.42 | 42.16 | | mlsum-fr | 35.26 | 25.96 | 28.98 | 16.72 | 12.35 | 13.75 | 28.06 | 20.75 | 23.12 | | mlsum-es | 33.37 | 24.84 | 27.52 | 13.29 | 10.05 | 11.05 | 27.63 | 20.69 | 22.87 | | mlsum-ru | 0.79 | 0.66 | 0.66 | 0.26 | 0.2 | 0.22 | 0.79 | 0.66 | 0.65 | | cnewsum | 24.49 | 24.38 | 23.23 | 6.48 | 6.7 | 6.24 | 24.18 | 24.04 | 22.91 | # USAGE ``` soon ```