--- library_name: peft license: mit base_model: microsoft/phi-1_5 tags: - axolotl - generated_from_trainer model-index: - name: 5d8c8b3a-652d-40d9-8369-130e9d58b3d6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/phi-1_5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4f3433695269a30e_train_data.json ds_type: json format: custom path: /workspace/input_data/4f3433695269a30e_train_data.json type: field_input: topic field_instruction: text field_output: code format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cvoffer/5d8c8b3a-652d-40d9-8369-130e9d58b3d6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 78GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/4f3433695269a30e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c9582af1-e5cb-4d65-9f9c-24b280e1c3ca wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c9582af1-e5cb-4d65-9f9c-24b280e1c3ca warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ```

# 5d8c8b3a-652d-40d9-8369-130e9d58b3d6 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 0.8442 | | 0.5338 | 0.0015 | 5 | 0.8162 | | 0.5337 | 0.0031 | 10 | 0.7031 | | 0.5113 | 0.0046 | 15 | 0.6584 | | 0.5853 | 0.0062 | 20 | 0.6288 | | 0.5732 | 0.0077 | 25 | 0.6111 | | 0.6198 | 0.0093 | 30 | 0.6075 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1