File size: 4,338 Bytes
121e969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cb835dfb-ad36-4fb7-897e-cb43c66562f4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: auto
bnb_config_kwargs:
  bnb_4bit_quant_type: nf4
  bnb_4bit_use_double_quant: true
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 69b430b6b5e9fbd9_train_data.json
  ds_type: json
  path: /workspace/input_data/69b430b6b5e9fbd9_train_data.json
  type:
    field_input: original-context
    field_instruction: original-instruction
    field_output: original-response
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: cwaud/cb835dfb-ad36-4fb7-897e-cb43c66562f4
hub_repo: cwaud
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GiB
  1: 70GiB
  2: 70GiB
  3: 70GiB
max_steps: 133
micro_batch_size: 1
mlflow_experiment_name: /tmp/69b430b6b5e9fbd9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: rayonlabs-rayon-labs
wandb_mode: online
wandb_name: cb835dfb-ad36-4fb7-897e-cb43c66562f4
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: cb835dfb-ad36-4fb7-897e-cb43c66562f4
warmup_raio: 0.03
warmup_ratio: 0.04
weight_decay: 0.01
xformers_attention: null

```

</details><br>

# cb835dfb-ad36-4fb7-897e-cb43c66562f4

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3411

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 133

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7571        | 0.0086 | 1    | 3.2657          |
| 2.0711        | 0.2152 | 25   | 1.5081          |
| 1.7199        | 0.4305 | 50   | 1.3899          |
| 1.7236        | 0.6457 | 75   | 1.3493          |
| 1.5976        | 0.8609 | 100  | 1.3449          |
| 1.4308        | 1.0761 | 125  | 1.3411          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1