Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- teknium/openhermes
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
library_name: transformers
|
10 |
+
pipeline_tag: question-answering
|
11 |
+
tags:
|
12 |
+
- General
|
13 |
+
---
|
14 |
+
# Model Card: StableHermes-3b by cxllin
|
15 |
+
|
16 |
+

|
17 |
+
|
18 |
+
## Overview
|
19 |
+
|
20 |
+
StableHermes-3b is an advanced 3 billion parameter language model fine-tuned on the expansive OpenHermes dataset. This dataset boasts 242,000 entries primarily sourced from GPT-4 generated data, encompassing a variety of open datasets from the broader AI landscape. As an enhancement of the GPT-NeoX family, StableHermes-3b is specifically designed to provide accurate and detailed insights across a myriad of domains.
|
21 |
+
|
22 |
+
## Key Features
|
23 |
+
|
24 |
+
- **3 Billion Parameters:** State-of-the-art architecture emphasizing precision and detail.
|
25 |
+
- **Diverse Training Data:** Benefits from entries like GPTeacher datasets, WizardLM, Airoboros GPT-4, Camel-AI's domain expert datasets, and more.
|
26 |
+
- **Open Source Dataset:** OpenHermes is one of the first fine-tunes of the Hermes dataset that has an entirely open-source dataset.
|
27 |
+
- **Advanced Transformer Decoder Architecture:** Based on the GPT-NeoX's decoder-only language model structure.
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
To leverage StableHermes-3b for generating insights or responses, you can use the following code snippet:
|
32 |
+
|
33 |
+
```python
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("cxllin/StableHermes-3b")
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
"cxllin/StableHermes-3b",
|
39 |
+
trust_remote_code=True,
|
40 |
+
torch_dtype="auto",
|
41 |
+
)
|
42 |
+
model.cuda()
|
43 |
+
inputs = tokenizer("Describe the potential implications of quantum computing on the future of cybersecurity.", return_tensors="pt").to("cuda")
|
44 |
+
tokens = model.generate(
|
45 |
+
**inputs,
|
46 |
+
max_new_tokens=64,
|
47 |
+
temperature=0.75,
|
48 |
+
top_p=0.95,
|
49 |
+
do_sample=True,
|
50 |
+
)
|
51 |
+
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
|