import time from transformers import AutoTokenizer, AutoModelForCausalLM class EndpointHandler: """ Custom handler for `Qwen/Qwen2.5-Math-7B-Instruct`. """ def __init__(self, path=""): """ Initialize model and tokenizer. :param path: Path to model and tokenizer """ self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained(path, torch_dtype="auto", device_map="auto") def __call__(self, data: dict): """ Execute model based on input data. :param data: Input parameters for the model. Should be in the following form: `{"inputs": "input_string", "parameters": {"parameter_1": 0, "parameter_2": 0}}` :return: dict (answer, num_new_token, speed) """ question = data.get("inputs", None) max_new_tokens = data.get("max_new_tokens", 1024) parameters = data.get("parameters", {}) if not question: raise ValueError("Input prompt is missing.") messages = [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}. " "Then, give your confidence level regarding your answer."}, {"role": "user", "content": question} ] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = self.tokenizer([text], return_tensors="pt").to("cuda") time_start = time.time() generated_ids = self.model.generate( **model_inputs, max_new_tokens=max_new_tokens, temperature=1.0, **parameters ) time_end = time.time() num_new_tokens = len(generated_ids[0]) - len(model_inputs[0]) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] speed = num_new_tokens / (time_end - time_start) return { "answer": response, "num_new_tokens": num_new_tokens, "speed": speed }