--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-xsum-dc results: [] --- # bart-large-xsum-dc This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6335 - Rouge1: 32.0323 - Rouge2: 14.1008 - Rougel: 24.5596 - Rougelsum: 25.6498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.9052 | 1.0 | 2676 | 1.7569 | 30.4785 | 12.762 | 23.1862 | 23.9824 | | 1.4258 | 2.0 | 5352 | 1.5930 | 31.7087 | 13.5933 | 23.9115 | 24.7093 | | 1.1141 | 3.0 | 8028 | 1.5729 | 32.3123 | 14.3572 | 24.8666 | 25.856 | | 0.8621 | 4.0 | 10704 | 1.6335 | 32.0323 | 14.1008 | 24.5596 | 25.6498 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2