dada22231 commited on
Commit
c07c837
·
verified ·
1 Parent(s): 2ebca67

End of training

Browse files
Files changed (2) hide show
  1. README.md +166 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: c2dcbd2a-e32b-423d-9269-957f2afd9f21
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 16
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - 82568ec1ced6c933_train_data.json
30
+ ds_type: json
31
+ field: user 1 personas
32
+ path: /workspace/input_data/82568ec1ced6c933_train_data.json
33
+ type: completion
34
+ debug: null
35
+ deepspeed: null
36
+ device_map: auto
37
+ do_eval: true
38
+ early_stopping_patience: 1
39
+ eval_batch_size: 1
40
+ eval_sample_packing: false
41
+ eval_steps: 25
42
+ evaluation_strategy: steps
43
+ flash_attention: false
44
+ fp16: null
45
+ fsdp: null
46
+ fsdp_config: null
47
+ gradient_accumulation_steps: 32
48
+ gradient_checkpointing: true
49
+ group_by_length: true
50
+ hub_model_id: dada22231/c2dcbd2a-e32b-423d-9269-957f2afd9f21
51
+ hub_strategy: checkpoint
52
+ hub_token: null
53
+ hub_username: dada22231
54
+ learning_rate: 0.0001
55
+ load_in_4bit: false
56
+ load_in_8bit: false
57
+ local_rank: null
58
+ logging_steps: 1
59
+ lora_alpha: 64
60
+ lora_dropout: 0.05
61
+ lora_fan_in_fan_out: null
62
+ lora_model_dir: null
63
+ lora_r: 32
64
+ lora_target_linear: true
65
+ lora_target_modules:
66
+ - q_proj
67
+ - v_proj
68
+ lr_scheduler: cosine
69
+ max_grad_norm: 1.0
70
+ max_memory:
71
+ 0: 70GiB
72
+ 1: 70GiB
73
+ 2: 70GiB
74
+ 3: 70GiB
75
+ max_steps: 95
76
+ micro_batch_size: 1
77
+ mlflow_experiment_name: /tmp/82568ec1ced6c933_train_data.json
78
+ model_type: AutoModelForCausalLM
79
+ num_epochs: 3
80
+ optim_args:
81
+ adam_beta1: 0.9
82
+ adam_beta2: 0.95
83
+ adam_epsilon: 1e-5
84
+ optimizer: adamw_torch
85
+ output_dir: miner_id_24
86
+ pad_to_sequence_len: true
87
+ repository_id: dada22231/c2dcbd2a-e32b-423d-9269-957f2afd9f21
88
+ resume_from_checkpoint: null
89
+ s2_attention: null
90
+ sample_packing: false
91
+ save_steps: 25
92
+ save_strategy: steps
93
+ sequence_len: 2048
94
+ strict: false
95
+ tf32: false
96
+ tokenizer_type: AutoTokenizer
97
+ torch_compile: false
98
+ train_on_inputs: false
99
+ trust_remote_code: true
100
+ val_set_size: 50
101
+ wandb_entity: null
102
+ wandb_mode: online
103
+ wandb_name: c2dcbd2a-e32b-423d-9269-957f2afd9f21
104
+ wandb_project: Public_TuningSN
105
+ wandb_runid: c2dcbd2a-e32b-423d-9269-957f2afd9f21
106
+ warmup_ratio: 0.04
107
+ weight_decay: 0.01
108
+ xformers_attention: null
109
+
110
+ ```
111
+
112
+ </details><br>
113
+
114
+ # c2dcbd2a-e32b-423d-9269-957f2afd9f21
115
+
116
+ This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset.
117
+ It achieves the following results on the evaluation set:
118
+ - Loss: nan
119
+
120
+ ## Model description
121
+
122
+ More information needed
123
+
124
+ ## Intended uses & limitations
125
+
126
+ More information needed
127
+
128
+ ## Training and evaluation data
129
+
130
+ More information needed
131
+
132
+ ## Training procedure
133
+
134
+ ### Training hyperparameters
135
+
136
+ The following hyperparameters were used during training:
137
+ - learning_rate: 0.0001
138
+ - train_batch_size: 1
139
+ - eval_batch_size: 1
140
+ - seed: 42
141
+ - distributed_type: multi-GPU
142
+ - num_devices: 4
143
+ - gradient_accumulation_steps: 32
144
+ - total_train_batch_size: 128
145
+ - total_eval_batch_size: 4
146
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 3
149
+ - training_steps: 95
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 0.0 | 0.0125 | 1 | nan |
156
+ | 0.0 | 0.3120 | 25 | nan |
157
+ | 0.0 | 0.6240 | 50 | nan |
158
+
159
+
160
+ ### Framework versions
161
+
162
+ - PEFT 0.13.2
163
+ - Transformers 4.46.0
164
+ - Pytorch 2.5.0+cu124
165
+ - Datasets 3.0.1
166
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743dff903eeb7f2b1c93c3e00b17a8c8107d50d2117d2bf416580e556cc7e7bc
3
+ size 860011282