dada22231 commited on
Commit
5d25563
·
verified ·
1 Parent(s): 437a819

End of training

Browse files
Files changed (2) hide show
  1. README.md +182 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: JackFram/llama-160m
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: ebfe422c-38d4-40e3-9a02-968b865b24f5
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: JackFram/llama-160m
23
+ bf16: auto
24
+ chat_template: llama3
25
+ cosine_min_lr_ratio: 0.1
26
+ data_processes: 4
27
+ dataset_prepared_path: null
28
+ datasets:
29
+ - data_files:
30
+ - 412bfd271527b67e_train_data.json
31
+ ds_type: json
32
+ format: custom
33
+ num_proc: 4
34
+ path: /workspace/input_data/412bfd271527b67e_train_data.json
35
+ streaming: true
36
+ type:
37
+ field_input: ingress
38
+ field_instruction: title
39
+ field_output: article
40
+ format: '{instruction} {input}'
41
+ no_input_format: '{instruction}'
42
+ system_format: '{system}'
43
+ system_prompt: ''
44
+ debug: null
45
+ deepspeed: null
46
+ device_map:
47
+ ? ''
48
+ : balanced_low_0
49
+ do_eval: true
50
+ early_stopping_patience: 1
51
+ eval_batch_size: 1
52
+ eval_sample_packing: false
53
+ eval_steps: 25
54
+ evaluation_strategy: steps
55
+ flash_attention: false
56
+ fp16: null
57
+ fsdp: null
58
+ fsdp_config: null
59
+ gradient_accumulation_steps: 32
60
+ gradient_checkpointing: true
61
+ group_by_length: true
62
+ hub_model_id: dada22231/ebfe422c-38d4-40e3-9a02-968b865b24f5
63
+ hub_strategy: checkpoint
64
+ hub_token: null
65
+ learning_rate: 0.0001
66
+ load_in_4bit: false
67
+ load_in_8bit: false
68
+ local_rank: null
69
+ logging_steps: 1
70
+ lora_alpha: 64
71
+ lora_dropout: 0.05
72
+ lora_fan_in_fan_out: null
73
+ lora_model_dir: null
74
+ lora_r: 32
75
+ lora_target_linear: true
76
+ lora_target_modules:
77
+ - q_proj
78
+ - v_proj
79
+ lr_scheduler: cosine
80
+ max_grad_norm: 0.3
81
+ max_memory:
82
+ 0: 65GB
83
+ 1: 75GB
84
+ 2: 75GB
85
+ 3: 75GB
86
+ cpu: 96GB
87
+ max_steps: 50
88
+ micro_batch_size: 1
89
+ mixed_precision: bf16
90
+ mlflow_experiment_name: /tmp/412bfd271527b67e_train_data.json
91
+ model_type: AutoModelForCausalLM
92
+ num_epochs: 3
93
+ optim_args:
94
+ adam_beta1: 0.9
95
+ adam_beta2: 0.95
96
+ adam_epsilon: 1e-5
97
+ optimizer: adamw_torch
98
+ output_dir: miner_id_24
99
+ pad_to_sequence_len: true
100
+ resume_from_checkpoint: null
101
+ s2_attention: null
102
+ sample_packing: false
103
+ save_steps: 25
104
+ save_strategy: steps
105
+ sequence_len: 2048
106
+ special_tokens:
107
+ pad_token: </s>
108
+ strict: false
109
+ tf32: false
110
+ tokenizer_type: AutoTokenizer
111
+ torch_compile: false
112
+ torch_dtype: bfloat16
113
+ train_on_inputs: false
114
+ trust_remote_code: true
115
+ use_cache: false
116
+ val_set_size: 50
117
+ wandb_entity: null
118
+ wandb_mode: online
119
+ wandb_name: ebfe422c-38d4-40e3-9a02-968b865b24f5
120
+ wandb_project: Public_TuningSN
121
+ wandb_runid: ebfe422c-38d4-40e3-9a02-968b865b24f5
122
+ warmup_ratio: 0.05
123
+ weight_decay: 0.01
124
+ xformers_attention: null
125
+
126
+ ```
127
+
128
+ </details><br>
129
+
130
+ # ebfe422c-38d4-40e3-9a02-968b865b24f5
131
+
132
+ This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset.
133
+ It achieves the following results on the evaluation set:
134
+ - Loss: 4.4408
135
+
136
+ ## Model description
137
+
138
+ More information needed
139
+
140
+ ## Intended uses & limitations
141
+
142
+ More information needed
143
+
144
+ ## Training and evaluation data
145
+
146
+ More information needed
147
+
148
+ ## Training procedure
149
+
150
+ ### Training hyperparameters
151
+
152
+ The following hyperparameters were used during training:
153
+ - learning_rate: 0.0001
154
+ - train_batch_size: 1
155
+ - eval_batch_size: 1
156
+ - seed: 42
157
+ - distributed_type: multi-GPU
158
+ - num_devices: 4
159
+ - gradient_accumulation_steps: 32
160
+ - total_train_batch_size: 128
161
+ - total_eval_batch_size: 4
162
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
163
+ - lr_scheduler_type: cosine
164
+ - lr_scheduler_warmup_steps: 2
165
+ - training_steps: 50
166
+
167
+ ### Training results
168
+
169
+ | Training Loss | Epoch | Step | Validation Loss |
170
+ |:-------------:|:------:|:----:|:---------------:|
171
+ | 5.537 | 0.0007 | 1 | 5.0871 |
172
+ | 4.6834 | 0.0171 | 25 | 4.5525 |
173
+ | 4.5846 | 0.0342 | 50 | 4.4408 |
174
+
175
+
176
+ ### Framework versions
177
+
178
+ - PEFT 0.13.2
179
+ - Transformers 4.46.0
180
+ - Pytorch 2.5.0+cu124
181
+ - Datasets 3.0.1
182
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5fa6db83a6eb9b4df0ad38087430a1e01ecbfe64988d796ba757ccde57a3b73
3
+ size 27192298