--- license: apache-2.0 base_model: PartAI/TookaBERT-Base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_model results: [] language: - fa pipeline_tag: token-classification --- # my_model This model is a fine-tuned version of [PartAI/TookaBERT-Base](https://huggingface.co/PartAI/TookaBERT-Base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5927 - Precision: 0.6667 - Recall: 0.5455 - F1: 0.6 - Accuracy: 0.7660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 2.1391 | 0.25 | 0.1818 | 0.2105 | 0.5532 | | No log | 2.0 | 20 | 1.7910 | 0.5556 | 0.4545 | 0.5 | 0.7447 | | No log | 3.0 | 30 | 1.5927 | 0.6667 | 0.5455 | 0.6 | 0.7660 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1