Commit
·
6ab8bd8
1
Parent(s):
9933717
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ko
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
- cer
|
8 |
+
tags:
|
9 |
+
- transcribe
|
10 |
+
- whisper
|
11 |
+
---
|
12 |
+
|
13 |
+
# Fine-tune Whisper-small for Korean Speech Recognition sample data (PoC)
|
14 |
+
|
15 |
+
Fine-tuning was performed using sample voices recorded from this csv data(https://github.com/hyeonsangjeon/job-transcribe/blob/main/meta_voice_data_3922.csv).
|
16 |
+
We do not publish sample voices, so if you want to fine-tune yourself from scratch, please record separately or use a public dataset.
|
17 |
+
|
18 |
+
Fine tuning training based on the guide at https://huggingface.co/blog/fine-tune-whisper
|
19 |
+
|
20 |
+
## Training
|
21 |
+
|
22 |
+
### Base model
|
23 |
+
|
24 |
+
OpenAI's `whisper-small` (https://huggingface.co/openai/whisper-small)
|
25 |
+
|
26 |
+
### Parameters
|
27 |
+
We used heuristic parameters without separate hyperparameter tuning. The sampling rate is set to 16,000Hz.
|
28 |
+
- learning_rate = 2e-5
|
29 |
+
- epochs = 5
|
30 |
+
- gradient_accumulation_steps = 4
|
31 |
+
- per_device_train_batch_size = 4
|
32 |
+
- fp16 = True
|
33 |
+
- gradient_checkpointing = True
|
34 |
+
- generation_max_length = 225
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
You need to install librosa package in order to convert wave to Mel Spectrogram. (`pip install librosa`)
|
38 |
+
|
39 |
+
### inference.py
|
40 |
+
|
41 |
+
```python
|
42 |
+
import librosa
|
43 |
+
file = "nlp-voice-3922/data/0002d3428f0ddfa5a48eec5cc351daa8.wav"
|
44 |
+
arr, sampling_rate = librosa.load(file, sr=16000)
|
45 |
+
|
46 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
47 |
+
from datasets import load_dataset
|
48 |
+
import torch
|
49 |
+
|
50 |
+
# load model and processor
|
51 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
52 |
+
model = WhisperForConditionalGeneration.from_pretrained("daekeun-ml/whisper-small-ko-finetuned-single-speaker-3922samples")
|
53 |
+
|
54 |
+
input_features = processor(arr, return_tensors="pt", sampling_rate=sampling_rate).input_features
|
55 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="ko", task="transcribe")
|
56 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids = forced_decoder_ids)
|
57 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True)
|
58 |
+
|
59 |
+
print(transcription)
|
60 |
+
```
|