--- tags: - npu - amd - llama3 --- This is a model that has been AWQ quantized and converted to run on the NPU installed in the Ryzen AI PC (for example, Ryzen 9 7940HS Processor) (for Windows environment) For information on setting up Ryzen AI for LLMs in window 11, see [Running LLM on AMD NPU Hardware](https://www.hackster.io/gharada2013/running-llm-on-amd-npu-hardware-19322f). The following sample assumes that the setup on the above page has been completed. ### setup In cmd windows. ``` conda activate ryzenai-transformers \RyzenAI-SW\example\transformers\setup.bat git lfs install git clone https://huggingface.co/dahara1/llama3-8b-amd-npu cd llama3-8b-amd-npu git lfs pull cd .. copy \RyzenAI-SW\example\transformers\models\llama2\modeling_llama_amd.py . # set up Runtime. see [Runtime Setup](https://ryzenai.docs.amd.com/en/latest/runtime_setup.html) set XLNX_VART_FIRMWARE=\voe-4.0-win_amd64\1x4.xclbin set NUM_OF_DPU_RUNNERS=1 # save below sample script as utf8 and llama-3-test.py python llama3-test.py ``` ### Sample Script ``` import torch import time import os import psutil import transformers from transformers import AutoTokenizer, set_seed import qlinear import logging set_seed(123) transformers.logging.set_verbosity_error() logging.disable(logging.CRITICAL) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, ] message_list = [ "Who are you? ", # Japanese "あなたの乗っている船の名前は何ですか?英語ではなく全て日本語だけを使って返事をしてください", # Chainese "你经历过的最危险的冒险是什么?请用中文回答所有问题,不要用英文。", # French "À quelle vitesse va votre bateau ? Veuillez répondre uniquement en français et non en anglais.", # Korean "당신은 그 배의 어디를 좋아합니까? 영어를 사용하지 않고 모두 한국어로 대답하십시오.", # German "Wie würde Ihr Schiffsname auf Deutsch lauten? Bitte antwortet alle auf Deutsch statt auf Englisch.", # Taiwanese "您發現過的最令人驚奇的寶藏是什麼?請僅使用台語和繁體中文回答,不要使用英文。", ] if __name__ == "__main__": p = psutil.Process() p.cpu_affinity([0, 1, 2, 3]) torch.set_num_threads(4) tokenizer = AutoTokenizer.from_pretrained("llama3-8b-amd-npu") ckpt = "llama3-8b-amd-npu/pytorch_llama3_8b_w_bit_4_awq_lm_amd.pt" terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] model = torch.load(ckpt) model.eval() model = model.to(torch.bfloat16) for n, m in model.named_modules(): if isinstance(m, qlinear.QLinearPerGrp): print(f"Preparing weights of layer : {n}") m.device = "aie" m.quantize_weights() print("system: " + messages[0]['content']) for i in range(len(message_list)): messages.append({"role": "user", "content": message_list[i]}) print("user: " + message_list[i]) input = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt", return_dict=True ) outputs = model.generate(input['input_ids'], max_new_tokens=600, eos_token_id=terminators, attention_mask=input['attention_mask'], do_sample=True, temperature=0.6, top_p=0.9) response = outputs[0][input['input_ids'].shape[-1]:] response_message = tokenizer.decode(response, skip_special_tokens=True) print("assistant: " + response_message) messages.append({"role": "system", "content": response_message}) ```