--- base_model: mistralai/Mistral-7B-v0.1 tags: - alignment-handbook - trl - orpo - generated_from_trainer - trl - orpo - generated_from_trainer - entity linking datasets: - arynkiewicz/anydef-kilt-tasks-v2 model-index: - name: anydef-orpo-v2 results: [] license: apache-2.0 inference: false --- # anydef-orpo-v2 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the arynkiewicz/anydef-kilt-tasks-v2 dataset. Find out about Model description, Intended uses & limitations and Training and evaluation data on our [github](https://github.com/daisd-ai/universal-el). This is an updated version of the anydef model. The primary goal was to use an improved dataset during fine-tuning, enabling the model to better understand nuances. Overall, anydef-v2 offers better performance in benchmarks, and manual inspection of the results suggests that the model has indeed improved. Precision (%): | Dataset | anydef | anydef-v2 | |------------|------------|------------| | RSS-500 | 66.23| 66.89| | ISTEX-1000| 86.72| 85.82| | Reuters-128| 63.8| 64.88| | TweekiGold| 75.23| 75.93| Retrieval rate (%): | Dataset | anydef | anydef-v2 | |------------|------------|------------| | RSS-500 | 82.78| 84.11| | ISTEX-1000| 97.91| 97.76| | Reuters-128| 80.47| 83.33| | TweekiGold| 89.93| 91.67| ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1