danfarh2000 commited on
Commit
4e0794b
·
verified ·
1 Parent(s): 1fd1f23

text-summarization-T5

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: t5-small
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - xsum
9
+ model-index:
10
+ - name: text-summarization-T5
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # text-summarization-T5
18
+
19
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.6883
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 2
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:------:|:----:|:---------------:|
54
+ | 3.8764 | 0.0627 | 100 | 3.6376 |
55
+ | 3.6129 | 0.1255 | 200 | 3.2631 |
56
+ | 3.3392 | 0.1882 | 300 | 3.0248 |
57
+ | 3.207 | 0.2509 | 400 | 2.9294 |
58
+ | 3.1548 | 0.3137 | 500 | 2.8725 |
59
+ | 3.0969 | 0.3764 | 600 | 2.8333 |
60
+ | 3.0718 | 0.4391 | 700 | 2.8018 |
61
+ | 3.0476 | 0.5018 | 800 | 2.7803 |
62
+ | 3.0431 | 0.5646 | 900 | 2.7651 |
63
+ | 3.0216 | 0.6273 | 1000 | 2.7538 |
64
+ | 3.0003 | 0.6900 | 1100 | 2.7440 |
65
+ | 3.0018 | 0.7528 | 1200 | 2.7363 |
66
+ | 2.9993 | 0.8155 | 1300 | 2.7289 |
67
+ | 2.9833 | 0.8782 | 1400 | 2.7236 |
68
+ | 2.9827 | 0.9410 | 1500 | 2.7181 |
69
+ | 2.9737 | 1.0037 | 1600 | 2.7145 |
70
+ | 2.968 | 1.0664 | 1700 | 2.7107 |
71
+ | 2.967 | 1.1291 | 1800 | 2.7074 |
72
+ | 2.9709 | 1.1919 | 1900 | 2.7042 |
73
+ | 2.9593 | 1.2546 | 2000 | 2.7011 |
74
+ | 2.9628 | 1.3173 | 2100 | 2.6987 |
75
+ | 2.9573 | 1.3801 | 2200 | 2.6969 |
76
+ | 2.955 | 1.4428 | 2300 | 2.6947 |
77
+ | 2.9483 | 1.5055 | 2400 | 2.6934 |
78
+ | 2.9546 | 1.5683 | 2500 | 2.6923 |
79
+ | 2.9492 | 1.6310 | 2600 | 2.6910 |
80
+ | 2.9493 | 1.6937 | 2700 | 2.6903 |
81
+ | 2.9482 | 1.7564 | 2800 | 2.6896 |
82
+ | 2.9524 | 1.8192 | 2900 | 2.6890 |
83
+ | 2.9399 | 1.8819 | 3000 | 2.6886 |
84
+ | 2.9347 | 1.9446 | 3100 | 2.6883 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - PEFT 0.14.0
90
+ - Transformers 4.44.2
91
+ - Pytorch 2.4.1+cu121
92
+ - Datasets 3.2.0
93
+ - Tokenizers 0.19.1