danieladejumo
commited on
Commit
·
8e062f7
1
Parent(s):
f73b5b5
Created and train PPO model
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-mountan_car.zip +3 -0
- ppo-mountan_car/_stable_baselines3_version +1 -0
- ppo-mountan_car/data +99 -0
- ppo-mountan_car/policy.optimizer.pth +3 -0
- ppo-mountan_car/policy.pth +3 -0
- ppo-mountan_car/pytorch_variables.pth +3 -0
- ppo-mountan_car/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -92.04 +/- 3.97
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCarContinuous-v0
|
20 |
+
type: MountainCarContinuous-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **MountainCarContinuous-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bce3664d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bce366560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bce3665f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bce366680>", "_build": "<function ActorCriticPolicy._build at 0x7f9bce366710>", "forward": "<function ActorCriticPolicy.forward at 0x7f9bce3667a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bce366830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9bce3668c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bce366950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bce3669e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bce366a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9bce38b150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVewEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsBhZRoColDBAAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwGFlGgKiUMEAACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLAYWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsBhZRoKoloLXSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [1], "low": "[-1.]", "high": "[1.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655745436.2788713, "learning_rate": 7.77e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIOCJav1EPt7yUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV+gYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFJ++Sr5qM6MAWyUTRQCjAF0lEdAaNkYD1XeWXV9lChoBkdAVUffAKv3amgHTSMBaAhHQGkiDU3GXHB1fZQoaAZHQFLfq3EyckNoB03vAWgIR0Bpodf3N9pidX2UKGgGR0BLSCVbA1vVaAdNiQNoCEdAaoxs3yZrpXV9lChoBkdAVee5QP7N0WgHTSABaAhHQGrX3l8w5/91fZQoaAZHQFIHEIgNgBtoB00sAmgIR0BrbCHM2WIHdX2UKGgGR0BUfdy1eBxxaAdNjgFoCEdAa9XCMxXXAnV9lChoBkdAVm9Tgl4TsmgHS6poCEdAbAI23rleW3V9lChoBkdAUtJ05lvqDGgHTb4BaAhHQGx454W1twd1fZQoaAZHQFZQrkbPyCpoB0uqaAhHQGylLp7kXDZ1fZQoaAZHQFPnpj+aScNoB02WAWgIR0BtEHBP9DQadX2UKGgGR0BVZSqIacZtaAdNCgFoCEdAbVTZ6D5CW3V9lChoBkdAUp3gWJrLyWgHTekBaAhHQG3UnPeHi3p1fZQoaAZHQFSfmLLpzLhoB00OAWgIR0BuGx/mT1TSdX2UKGgGR0BJ3sg+yJKraAdNLgNoCEdAbu4mBvrGBHV9lChoBkdATsTOgQHzH2gHTZQCaAhHQG+Zk0BOpKl1fZQoaAZHQErYj2SMcZNoB01qAmgIR0BwHFsZYPoWdX2UKGgGR0BQYwCKaXruaAdNMAJoCEdAcGU81n/T9nV9lChoBkdAUoAQGwA2h2gHTbcBaAhHQHCeFQ2uPmx1fZQoaAZHQFVfKIBRyfdoB0vYaAhHQHC57qY7aIx1fZQoaAZHQFcUU5dWyTpoB0t2aAhHQHDJYx59mYl1fZQoaAZHQFbgG8274BVoB0txaAhHQHDX4BzV+Zx1fZQoaAZHQE/lq0MPSUloB01YAmgIR0BxJo5wOvt/dX2UKGgGR0BW0rAk9lmOaAdLiGgIR0BxOEMb3oLYdX2UKGgGR0BUZjCUHIIXaAdNKwFoCEdAcV7tfoicG3V9lChoBkdARzlhd+ocaWgHTQcDaAhHQHHE8Oskpqh1fZQoaAZHQFVVPo3aSLZoB0vOaAhHQHHfUpqh11Z1fZQoaAZHQFK20Mw1zhhoB02UAWgIR0ByE9cu8K5TdX2UKGgGR0BQ2uskpqh2aAdN3gFoCEdAclGSgGr0a3V9lChoBkdAVvnrrxAjZGgHS3FoCEdAcmAaPjn3c3V9lChoBkdAVumMhouf3GgHS1hoCEdAcmuRXwLE1nV9lChoBkdAVmKdSVGCqmgHS4NoCEdAcn0UC7sfJXV9lChoBkdAUbtdnkDIR2gHTXkBaAhHQHKt5kXk5p91fZQoaAZHQFRUmWt2cKBoB0vjaAhHQHLLC/O+qR51fZQoaAZHQFHl5T6zmfZoB02jAWgIR0BzAmK+BYmtdX2UKGgGR0BTvbHQyAQQaAdNCwFoCEdAcyS0u14PgHV9lChoBkdAUKKuA7Ppp2gHTbkBaAhHQHNd5nctXgd1fZQoaAZHQFJAQ9zOopBoB01nAWgIR0BzjGTRplBhdX2UKGgGR0BF6ZBLPD51aAdN0QJoCEdAc+mJDVpblnV9lChoBkdASy/phWo3rGgHTW0CaAhHQHQ6dZaFEiN1fZQoaAZHQFAl1lGwzLxoB01+AWgIR0B0azKdQO4HdX2UKGgGR0BW9+1Bt1p1aAdLYmgIR0B0eJL8JlasdX2UKGgGR0BUEDm0VrRCaAdNNgFoCEdAdJ/ZYPoV23V9lChoBkdAUzHRsuWa+mgHTSsBaAhHQHTHGxQizLR1fZQoaAZHQFZ1YeT3Zf5oB0uDaAhHQHTX4rSVnmJ1fZQoaAZHQFccuhsZYPpoB0t7aAhHQHToQ+hXbM51fZQoaAZHQFP1NUfgaWJoB0v7aAhHQHUIgoCuEEl1fZQoaAZHQFdwb7CSA6NoB0tLaAhHQHUR2cvugHx1fZQoaAZHQFIdtDD0lJJoB01hAWgIR0B1P8CDEm6YdX2UKGgGR0BKqehGpda/aAdNQwJoCEdAdYuV6/qPfnV9lChoBkdAVzzko4MnZ2gHS1NoCEdAdZYD7qIJq3V9lChoBkdAVYWgam4y5GgHS65oCEdAdayR51Ng0HV9lChoBkdAVpAZydWhiGgHS4xoCEdAdb4khzNliHV9lChoBkdAT93+MqBmPGgHTZcBaAhHQHXzDhP0qYt1fZQoaAZHQFWIaQmu1WtoB0ujaAhHQHYI4QarFOx1fZQoaAZHQFYAwDvE0i1oB0uYaAhHQHYcxQ79ycV1fZQoaAZHQFJUC6Ymb9ZoB01qAWgIR0B2TD5HmRvFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 8, "gamma": 0.9999, "gae_lambda": 0.9, "ent_coef": 0.00429, "vf_coef": 0.19, "max_grad_norm": 5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-mountan_car.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a16f8c96ecdbd49176baa379a92231fcec1f9673ffbf2d175e6bf3b535b4b715
|
3 |
+
size 130447
|
ppo-mountan_car/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-mountan_car/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bce3664d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bce366560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bce3665f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bce366680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9bce366710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9bce3667a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bce366830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9bce3668c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bce366950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bce3669e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bce366a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9bce38b150>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
2
|
29 |
+
],
|
30 |
+
"low": "[-1.2 -0.07]",
|
31 |
+
"high": "[0.6 0.07]",
|
32 |
+
"bounded_below": "[ True True]",
|
33 |
+
"bounded_above": "[ True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVewEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsBhZRoColDBAAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwGFlGgKiUMEAACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLAYWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsBhZRoKoloLXSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
1
|
42 |
+
],
|
43 |
+
"low": "[-1.]",
|
44 |
+
"high": "[1.]",
|
45 |
+
"bounded_below": "[ True]",
|
46 |
+
"bounded_above": "[ True]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 20000,
|
51 |
+
"_total_timesteps": 20000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": null,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1655745436.2788713,
|
56 |
+
"learning_rate": 7.77e-05,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIOCJav1EPt7yUdJRiLg=="
|
65 |
+
},
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": true,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASV+gYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFJ++Sr5qM6MAWyUTRQCjAF0lEdAaNkYD1XeWXV9lChoBkdAVUffAKv3amgHTSMBaAhHQGkiDU3GXHB1fZQoaAZHQFLfq3EyckNoB03vAWgIR0Bpodf3N9pidX2UKGgGR0BLSCVbA1vVaAdNiQNoCEdAaoxs3yZrpXV9lChoBkdAVee5QP7N0WgHTSABaAhHQGrX3l8w5/91fZQoaAZHQFIHEIgNgBtoB00sAmgIR0BrbCHM2WIHdX2UKGgGR0BUfdy1eBxxaAdNjgFoCEdAa9XCMxXXAnV9lChoBkdAVm9Tgl4TsmgHS6poCEdAbAI23rleW3V9lChoBkdAUtJ05lvqDGgHTb4BaAhHQGx454W1twd1fZQoaAZHQFZQrkbPyCpoB0uqaAhHQGylLp7kXDZ1fZQoaAZHQFPnpj+aScNoB02WAWgIR0BtEHBP9DQadX2UKGgGR0BVZSqIacZtaAdNCgFoCEdAbVTZ6D5CW3V9lChoBkdAUp3gWJrLyWgHTekBaAhHQG3UnPeHi3p1fZQoaAZHQFSfmLLpzLhoB00OAWgIR0BuGx/mT1TSdX2UKGgGR0BJ3sg+yJKraAdNLgNoCEdAbu4mBvrGBHV9lChoBkdATsTOgQHzH2gHTZQCaAhHQG+Zk0BOpKl1fZQoaAZHQErYj2SMcZNoB01qAmgIR0BwHFsZYPoWdX2UKGgGR0BQYwCKaXruaAdNMAJoCEdAcGU81n/T9nV9lChoBkdAUoAQGwA2h2gHTbcBaAhHQHCeFQ2uPmx1fZQoaAZHQFVfKIBRyfdoB0vYaAhHQHC57qY7aIx1fZQoaAZHQFcUU5dWyTpoB0t2aAhHQHDJYx59mYl1fZQoaAZHQFbgG8274BVoB0txaAhHQHDX4BzV+Zx1fZQoaAZHQE/lq0MPSUloB01YAmgIR0BxJo5wOvt/dX2UKGgGR0BW0rAk9lmOaAdLiGgIR0BxOEMb3oLYdX2UKGgGR0BUZjCUHIIXaAdNKwFoCEdAcV7tfoicG3V9lChoBkdARzlhd+ocaWgHTQcDaAhHQHHE8Oskpqh1fZQoaAZHQFVVPo3aSLZoB0vOaAhHQHHfUpqh11Z1fZQoaAZHQFK20Mw1zhhoB02UAWgIR0ByE9cu8K5TdX2UKGgGR0BQ2uskpqh2aAdN3gFoCEdAclGSgGr0a3V9lChoBkdAVvnrrxAjZGgHS3FoCEdAcmAaPjn3c3V9lChoBkdAVumMhouf3GgHS1hoCEdAcmuRXwLE1nV9lChoBkdAVmKdSVGCqmgHS4NoCEdAcn0UC7sfJXV9lChoBkdAUbtdnkDIR2gHTXkBaAhHQHKt5kXk5p91fZQoaAZHQFRUmWt2cKBoB0vjaAhHQHLLC/O+qR51fZQoaAZHQFHl5T6zmfZoB02jAWgIR0BzAmK+BYmtdX2UKGgGR0BTvbHQyAQQaAdNCwFoCEdAcyS0u14PgHV9lChoBkdAUKKuA7Ppp2gHTbkBaAhHQHNd5nctXgd1fZQoaAZHQFJAQ9zOopBoB01nAWgIR0BzjGTRplBhdX2UKGgGR0BF6ZBLPD51aAdN0QJoCEdAc+mJDVpblnV9lChoBkdASy/phWo3rGgHTW0CaAhHQHQ6dZaFEiN1fZQoaAZHQFAl1lGwzLxoB01+AWgIR0B0azKdQO4HdX2UKGgGR0BW9+1Bt1p1aAdLYmgIR0B0eJL8JlasdX2UKGgGR0BUEDm0VrRCaAdNNgFoCEdAdJ/ZYPoV23V9lChoBkdAUzHRsuWa+mgHTSsBaAhHQHTHGxQizLR1fZQoaAZHQFZ1YeT3Zf5oB0uDaAhHQHTX4rSVnmJ1fZQoaAZHQFccuhsZYPpoB0t7aAhHQHToQ+hXbM51fZQoaAZHQFP1NUfgaWJoB0v7aAhHQHUIgoCuEEl1fZQoaAZHQFdwb7CSA6NoB0tLaAhHQHUR2cvugHx1fZQoaAZHQFIdtDD0lJJoB01hAWgIR0B1P8CDEm6YdX2UKGgGR0BKqehGpda/aAdNQwJoCEdAdYuV6/qPfnV9lChoBkdAVzzko4MnZ2gHS1NoCEdAdZYD7qIJq3V9lChoBkdAVYWgam4y5GgHS65oCEdAdayR51Ng0HV9lChoBkdAVpAZydWhiGgHS4xoCEdAdb4khzNliHV9lChoBkdAT93+MqBmPGgHTZcBaAhHQHXzDhP0qYt1fZQoaAZHQFWIaQmu1WtoB0ujaAhHQHYI4QarFOx1fZQoaAZHQFYAwDvE0i1oB0uYaAhHQHYcxQ79ycV1fZQoaAZHQFJUC6Ymb9ZoB01qAWgIR0B2TD5HmRvFdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 25000,
|
84 |
+
"n_steps": 8,
|
85 |
+
"gamma": 0.9999,
|
86 |
+
"gae_lambda": 0.9,
|
87 |
+
"ent_coef": 0.00429,
|
88 |
+
"vf_coef": 0.19,
|
89 |
+
"max_grad_norm": 5,
|
90 |
+
"batch_size": 256,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-mountan_car/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce5b49eeb1ffebcee5e7b194a633f8e2daa03d21ab118f929e748ceb6d9b67f7
|
3 |
+
size 78167
|
ppo-mountan_car/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032a183068e9f5cc140d7b7c244e9ee86c0931b8dcabd9c5bc767350450e120c
|
3 |
+
size 39870
|
ppo-mountan_car/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-mountan_car/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63da92ecff0fc195dcfa429a779a491dba72373bc9c9203b308c05a09d66a18c
|
3 |
+
size 241235
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -92.03675462990489, "std_reward": 3.968297130020583, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-20T17:22:40.216094"}
|