File size: 15,584 Bytes
bb91dea
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b03ac8a4c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b03ac8ac600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691026764468228464, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo+LAPgExorw3Vg0/o+LAPgExorw3Vg0/o+LAPgExorw3Vg0/o+LAPgExorw3Vg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAH14Sv+qLqD7ZAtg/cxa3vRwN1D/LTtg+izELv60Ekz+2yNu/vCfKP+CTj7/l+Lg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACj4sA+ATGivDdWDT/MBRw8riluun26Cjyj4sA+ATGivDdWDT/MBRw8riluun26Cjyj4sA+ATGivDdWDT/MBRw8riluun26Cjyj4sA+ATGivDdWDT/MBRw8riluun26CjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3767291  -0.01979876  0.5520968 ]\n [ 0.3767291  -0.01979876  0.5520968 ]\n [ 0.3767291  -0.01979876  0.5520968 ]\n [ 0.3767291  -0.01979876  0.5520968 ]]", "desired_goal": "[[-0.5717487   0.32919246  1.6875869 ]\n [-0.08939829  1.6566501   0.42247614]\n [-0.5437247   1.1485802  -1.7170627 ]\n [ 1.5793376  -1.1217003   1.4450957 ]]", "observation": "[[ 0.3767291  -0.01979876  0.5520968   0.00952287 -0.00090852  0.00846731]\n [ 0.3767291  -0.01979876  0.5520968   0.00952287 -0.00090852  0.00846731]\n [ 0.3767291  -0.01979876  0.5520968   0.00952287 -0.00090852  0.00846731]\n [ 0.3767291  -0.01979876  0.5520968   0.00952287 -0.00090852  0.00846731]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnT2cvbRH9ryFig4+ExhzPcpq/zxj1ms+d7+NPfKGGb40Qg8+54MsPHWc070JepA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.07628939 -0.03006349  0.13920029]\n [ 0.05934913  0.03117885  0.23031001]\n [ 0.06921285 -0.14992884  0.13990098]\n [ 0.01052949 -0.10332576  0.07054526]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfpCyHl/5L+UhpRSlIwBbJRLMowBdJRHQKkwKqH446x1fZQoaAZoCWgPQwjP3EPC9377v5SGlFKUaBVLMmgWR0CpL+cohIOIdX2UKGgGaAloD0MIgosVNZgG5r+UhpRSlGgVSzJoFkdAqS+JlWfbsXV9lChoBmgJaA9DCLsO1ZRkXfW/lIaUUpRoFUsyaBZHQKkuljuKGcp1fZQoaAZoCWgPQwhx5IHIIs3sv5SGlFKUaBVLMmgWR0CpMWtlRP43dX2UKGgGaAloD0MIvw0xXvOq+b+UhpRSlGgVSzJoFkdAqTEocHWz4XV9lChoBmgJaA9DCKG/0CNGT+W/lIaUUpRoFUsyaBZHQKkwyzE74i51fZQoaAZoCWgPQwhxAP2+f3Pxv5SGlFKUaBVLMmgWR0CpL9gWBSUDdX2UKGgGaAloD0MI2gHXFTNC9b+UhpRSlGgVSzJoFkdAqTKrZSNwSHV9lChoBmgJaA9DCPqa5bLROeu/lIaUUpRoFUsyaBZHQKkyZ9MsYl91fZQoaAZoCWgPQwieCrjn+dPjv5SGlFKUaBVLMmgWR0CpMgpX6qKhdX2UKGgGaAloD0MI4gURqWkX5r+UhpRSlGgVSzJoFkdAqTEXBrN4aHV9lChoBmgJaA9DCMFwrmGGhvK/lIaUUpRoFUsyaBZHQKkz43Ytg8d1fZQoaAZoCWgPQwj4GoLjMg4EwJSGlFKUaBVLMmgWR0CpM6ABtDUmdX2UKGgGaAloD0MIcm9+w0TjAMCUhpRSlGgVSzJoFkdAqTNCb+cYqHV9lChoBmgJaA9DCNCX3v5cNPS/lIaUUpRoFUsyaBZHQKkyT0xM3611fZQoaAZoCWgPQwimttRBXg/jv5SGlFKUaBVLMmgWR0CpNRR+BpYcdX2UKGgGaAloD0MIZePBFrv95r+UhpRSlGgVSzJoFkdAqTTQ0j1PFnV9lChoBmgJaA9DCAIqHEEqxdu/lIaUUpRoFUsyaBZHQKk0c2ZRbbF1fZQoaAZoCWgPQwixpx3+miznv5SGlFKUaBVLMmgWR0CpM3/47A+IdX2UKGgGaAloD0MIuhEWFXG687+UhpRSlGgVSzJoFkdAqTZ4X668QXV9lChoBmgJaA9DCD6WPnRBff6/lIaUUpRoFUsyaBZHQKk2NQZXMhZ1fZQoaAZoCWgPQwg900uMZXrmv5SGlFKUaBVLMmgWR0CpNden62v0dX2UKGgGaAloD0MIVFInoImw97+UhpRSlGgVSzJoFkdAqTTkka/ATXV9lChoBmgJaA9DCNz0Zz9SBADAlIaUUpRoFUsyaBZHQKk3tBsQ/X51fZQoaAZoCWgPQwgNxLKZQ1IAwJSGlFKUaBVLMmgWR0CpN3BsqJ/HdX2UKGgGaAloD0MIaCWt+IZC47+UhpRSlGgVSzJoFkdAqTcS8SPEKnV9lChoBmgJaA9DCI/gRsoWSeW/lIaUUpRoFUsyaBZHQKk2H53Tuv51fZQoaAZoCWgPQwjO4VrtYS/rv5SGlFKUaBVLMmgWR0CpOOGQjlgddX2UKGgGaAloD0MIgc6kTdV98b+UhpRSlGgVSzJoFkdAqTieK0lZ5nV9lChoBmgJaA9DCJ5EhH8RtOO/lIaUUpRoFUsyaBZHQKk4QLVFx4p1fZQoaAZoCWgPQwgRrKqX3yn8v5SGlFKUaBVLMmgWR0CpN01gH/tIdX2UKGgGaAloD0MIPbfQlQhU4b+UhpRSlGgVSzJoFkdAqToos/Y8MnV9lChoBmgJaA9DCPGbwkoFVfO/lIaUUpRoFUsyaBZHQKk55US7GvR1fZQoaAZoCWgPQwh2qKYk6/Dov5SGlFKUaBVLMmgWR0CpOYfcer+6dX2UKGgGaAloD0MIUp0OZD0187+UhpRSlGgVSzJoFkdAqTiUoBq9G3V9lChoBmgJaA9DCG2tLxLasgLAlIaUUpRoFUsyaBZHQKk7ZrjYI0J1fZQoaAZoCWgPQwjmO/iJAyjzv5SGlFKUaBVLMmgWR0CpOyN0eU6gdX2UKGgGaAloD0MIWMudmWD487+UhpRSlGgVSzJoFkdAqTrGIMz/InV9lChoBmgJaA9DCHU7+8qDdO6/lIaUUpRoFUsyaBZHQKk50weNkvt1fZQoaAZoCWgPQwg5DycwnVbxv5SGlFKUaBVLMmgWR0CpPKkhq0tzdX2UKGgGaAloD0MIuXGL+bkBCMCUhpRSlGgVSzJoFkdAqTxlgpjMFHV9lChoBmgJaA9DCEmdgCbCxv+/lIaUUpRoFUsyaBZHQKk8CACGN711fZQoaAZoCWgPQwh9ryE4LuP0v5SGlFKUaBVLMmgWR0CpOxSwwCbMdX2UKGgGaAloD0MILNUFvMxw97+UhpRSlGgVSzJoFkdAqT4ECeVcEHV9lChoBmgJaA9DCLXiGwqfLQTAlIaUUpRoFUsyaBZHQKk9wXfqHGl1fZQoaAZoCWgPQwgxW7Iqwk3+v5SGlFKUaBVLMmgWR0CpPWQxvegtdX2UKGgGaAloD0MIkE5d+SxP77+UhpRSlGgVSzJoFkdAqTxxFgDzRXV9lChoBmgJaA9DCErToGgewOW/lIaUUpRoFUsyaBZHQKk/6tga3ql1fZQoaAZoCWgPQwg3NGWnH/QGwJSGlFKUaBVLMmgWR0CpP6hTfixWdX2UKGgGaAloD0MId76fGi+d+b+UhpRSlGgVSzJoFkdAqT9L3XZoPHV9lChoBmgJaA9DCPTBMjZ0kwLAlIaUUpRoFUsyaBZHQKk+WZ0CA+Z1fZQoaAZoCWgPQwjx8nSuKKX9v5SGlFKUaBVLMmgWR0CpQdy4e9zwdX2UKGgGaAloD0MIvFgYIqePAsCUhpRSlGgVSzJoFkdAqUGbzErGznV9lChoBmgJaA9DCCbirfNvF+6/lIaUUpRoFUsyaBZHQKlBP0Syt3h1fZQoaAZoCWgPQwijAbwFEpTlv5SGlFKUaBVLMmgWR0CpQEz1CgK4dX2UKGgGaAloD0MIkgN2NXlKBMCUhpRSlGgVSzJoFkdAqUPulCTlk3V9lChoBmgJaA9DCI5Yi08B8PS/lIaUUpRoFUsyaBZHQKlDq+lCTll1fZQoaAZoCWgPQwiPxTapaEwBwJSGlFKUaBVLMmgWR0CpQ09+PRzBdX2UKGgGaAloD0MIwf9WsmOj47+UhpRSlGgVSzJoFkdAqUJds54nnnV9lChoBmgJaA9DCBLds67RMvG/lIaUUpRoFUsyaBZHQKlF3ISUTtd1fZQoaAZoCWgPQwi3YRQEj2/kv5SGlFKUaBVLMmgWR0CpRZklu3tsdX2UKGgGaAloD0MIn+dPG9UJCsCUhpRSlGgVSzJoFkdAqUU7vmYBvXV9lChoBmgJaA9DCGMraFpipfS/lIaUUpRoFUsyaBZHQKlESJ2t+1B1fZQoaAZoCWgPQwjDKAge354MwJSGlFKUaBVLMmgWR0CpRyGuLaVVdX2UKGgGaAloD0MI2NKjqZ7M8b+UhpRSlGgVSzJoFkdAqUbeNT987nV9lChoBmgJaA9DCIrNx7WhYvG/lIaUUpRoFUsyaBZHQKlGgLpA2Q51fZQoaAZoCWgPQwjJkc7AyIv0v5SGlFKUaBVLMmgWR0CpRY18kUsWdX2UKGgGaAloD0MIC5jArbt5BsCUhpRSlGgVSzJoFkdAqUiOQ8wHq3V9lChoBmgJaA9DCL1xUpj3uO2/lIaUUpRoFUsyaBZHQKlIS7kn1Fp1fZQoaAZoCWgPQwjUYvAw7Rvxv5SGlFKUaBVLMmgWR0CpR+5sTFl1dX2UKGgGaAloD0MIWTFcHQARBsCUhpRSlGgVSzJoFkdAqUb7Qw9JSXV9lChoBmgJaA9DCHA+daxSugrAlIaUUpRoFUsyaBZHQKlJv/I8yN51fZQoaAZoCWgPQwjk9WBSfPz7v5SGlFKUaBVLMmgWR0CpSXxqwhW6dX2UKGgGaAloD0MIQIUjSKVY/L+UhpRSlGgVSzJoFkdAqUkfBnBciXV9lChoBmgJaA9DCAt9sIwN3fC/lIaUUpRoFUsyaBZHQKlIK8vEjxF1fZQoaAZoCWgPQwggtYmT+x3hv5SGlFKUaBVLMmgWR0CpSxp8neBQdX2UKGgGaAloD0MIG4Uks3qH27+UhpRSlGgVSzJoFkdAqUrXHvMKTnV9lChoBmgJaA9DCJnWprG9dgDAlIaUUpRoFUsyaBZHQKlKeY0EX+F1fZQoaAZoCWgPQwjqQNZTq6/zv5SGlFKUaBVLMmgWR0CpSYZbILgGdX2UKGgGaAloD0MIkNeDSfFxBMCUhpRSlGgVSzJoFkdAqUxp7/n4f3V9lChoBmgJaA9DCKvQQCybefC/lIaUUpRoFUsyaBZHQKlMJnNgSe11fZQoaAZoCWgPQwj5E5UNa6oPwJSGlFKUaBVLMmgWR0CpS8khq0tzdX2UKGgGaAloD0MI43FRLSJK/L+UhpRSlGgVSzJoFkdAqUrV0mtyP3V9lChoBmgJaA9DCJnZ5zHKkw3AlIaUUpRoFUsyaBZHQKlNk1TBInV1fZQoaAZoCWgPQwgVrHE2HUELwJSGlFKUaBVLMmgWR0CpTU/OlfqpdX2UKGgGaAloD0MIbAiOy7ip4b+UhpRSlGgVSzJoFkdAqUzyYZ2pynV9lChoBmgJaA9DCI5Yi08BsPG/lIaUUpRoFUsyaBZHQKlL/wVj7Q91fZQoaAZoCWgPQwhYb9QK0/fbv5SGlFKUaBVLMmgWR0CpTubBoEjgdX2UKGgGaAloD0MI1hwgmKPnCcCUhpRSlGgVSzJoFkdAqU6kEmplz3V9lChoBmgJaA9DCBf1Se6wyQHAlIaUUpRoFUsyaBZHQKlORqlgtvp1fZQoaAZoCWgPQwjxL4LGTGIBwJSGlFKUaBVLMmgWR0CpTVN6ol2NdX2UKGgGaAloD0MIOpM2VfeI/7+UhpRSlGgVSzJoFkdAqVBDMxGlRHV9lChoBmgJaA9DCMZP4978Bva/lIaUUpRoFUsyaBZHQKlP/+I/JNl1fZQoaAZoCWgPQwi7YduizIbwv5SGlFKUaBVLMmgWR0CpT6KR+z+ndX2UKGgGaAloD0MIW3nJ/+Rv+7+UhpRSlGgVSzJoFkdAqU6vfTCtR3V9lChoBmgJaA9DCFg7inPUUfy/lIaUUpRoFUsyaBZHQKlRbOvdM0x1fZQoaAZoCWgPQwgiF5zB32/0v5SGlFKUaBVLMmgWR0CpUSlxn3+NdX2UKGgGaAloD0MI0XgiiPNw8r+UhpRSlGgVSzJoFkdAqVDL9wWFe3V9lChoBmgJaA9DCB5OYDqtW+K/lIaUUpRoFUsyaBZHQKlP2Jiy6c11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}