File size: 17,545 Bytes
2bbe167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
suzume-llama-3-8B-multilingual-orpo-borda-top25 - GGUF
- Model creator: https://huggingface.co/lightblue/
- Original model: https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q2_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q2_K.gguf) | Q2_K | 2.96GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_S.gguf) | IQ3_S | 3.43GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_M.gguf) | IQ3_M | 3.52GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K.gguf) | Q3_K | 3.74GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_0.gguf) | Q4_0 | 4.34GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K.gguf) | Q4_K | 4.58GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_1.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_1.gguf) | Q4_1 | 4.78GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_0.gguf) | Q5_0 | 5.21GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K.gguf) | Q5_K | 5.34GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_1.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_1.gguf) | Q5_1 | 5.65GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q6_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q6_K.gguf) | Q6_K | 6.14GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q8_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q8_0.gguf) | Q8_0 | 7.95GB |
Original model description:
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
base_model: lightblue/suzume-llama-3-8B-multilingual
model-index:
- name: workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
results: []
---
# Suzume ORPO
<p align="center">
<img width=500 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kWQSu02YfgYdUQqv4s5lq.png" alt="Suzume with Mitsu - a Japanese tree sparrow with honey on it"/>
</p>
[[Paper]](https://arxiv.org/abs/2405.18952) [[Dataset]](https://huggingface.co/datasets/lightblue/mitsu)
This is Suzume ORPO, an ORPO trained fine-tune of the [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) model using our [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset.
We have trained several versions of this model using ORPO and so recommend that you use the best performing model from our tests, [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half).
Note that this model has a non-commerical license as we used the Command R and Command R+ models to generate our training data for this model ([lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu)).
We are currently working on a developing a commerically usable model, so stay tuned for that!
# Model list
We have ORPO trained the following models using different proportions of the [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset:
* Trained on the top/bottom responses of all prompts in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full)
* Trained on the top/bottom responses of the prompts of the 75\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75)
* Trained on the top/bottom responses of the prompts of the 50\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half)
* Trained on the top/bottom responses of the prompts of the 25\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25)
# Model results
We compare the MT-Bench scores across 6 languages for our 4 ORPO trained models, as well as some baselines:
* [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - The foundation model that our models are ultimately built upon
* [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) - The highest performing open model on the Chatbot arena that is of a similar size to ours
* gpt-3.5-turbo - A fairly high quality (although not state-of-the-art) proprietary LLM
* [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) - The base model which we train our ORPO finetunes from
| **MT-Bench language** | **meta-llama/Meta-Llama-3-8B-Instruct** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** | **lightblue/suzume-llama-3-8B-multilingual** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25** |
|-----------------------|-----------------------------------------|-----------------------------------|-------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| **Chinese π¨π³** | NaN | 6.97 | 7.55 | 7.11 | 7.65 | **7.77** | 7.74 | 7.44 |
| **English πΊπΈ** | 7.98 | 7.92 | **8.26** | 7.73 | 7.98 | 7.94 | 7.98 | 8.22 |
| **French π«π·** | NaN | 7.29 | 7.74 | 7.66 | **7.84** | 7.46 | 7.78 | 7.81 |
| **German π©πͺ** | NaN | 6.99 | 7.68 | 7.26 | 7.28 | 7.64 | 7.7 | **7.71** |
| **Japanese π―π΅** | NaN | 6.22 | **7.84** | 6.56 | 7.2 | 7.12 | 7.34 | 7.04 |
| **Russian π·πΊ** | NaN | 8.28 | 7.94 | 8.19 | 8.3 | 8.74 | **8.94** | 8.81 |
We can see noticable improvement on most languages compared to the base model. We also find that our ORPO models achieve the highest score out of all the models we evaluated for a number of languages.
# Training data
We trained this model using the [lightblue/mitsu_full_borda](https://huggingface.co/datasets/lightblue/mitsu_full_borda) dataset.
# Training configuration
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: lightblue/suzume-llama-3-8B-multilingual
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: false
strict: false
rl: orpo
orpo_alpha: 0.1
remove_unused_columns: false
chat_template: chatml
datasets:
- path: lightblue/mitsu_top25_borda
type: orpo.chat_template
conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_top25_borda
val_set_size: 0.02
output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: mitsu_top25_borda
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
This model is a fine-tuned version of [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.6328 | 0.05 | 1 | 7.7812 |
| 7.7158 | 0.1 | 2 | 7.2589 |
| 7.2588 | 0.15 | 3 | 4.0580 |
| 4.0068 | 0.19 | 4 | 2.4598 |
| 2.4438 | 0.24 | 5 | 0.6504 |
| 0.6586 | 0.29 | 6 | 0.1129 |
| 0.1235 | 0.34 | 7 | 0.1066 |
| 0.1273 | 0.39 | 8 | 0.1041 |
| 0.1076 | 0.44 | 9 | 0.0987 |
| 0.1009 | 0.48 | 10 | 0.0940 |
| 0.1172 | 0.53 | 11 | 0.0885 |
| 0.1016 | 0.58 | 12 | 0.0867 |
| 0.1088 | 0.63 | 13 | 0.0859 |
| 0.095 | 0.68 | 14 | 0.0846 |
| 0.1101 | 0.73 | 15 | 0.0839 |
| 0.0969 | 0.78 | 16 | 0.0832 |
| 0.0864 | 0.82 | 17 | 0.0825 |
| 0.0918 | 0.87 | 18 | 0.0821 |
| 0.0927 | 0.92 | 19 | 0.0819 |
| 0.0967 | 0.97 | 20 | 0.0818 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0
# How to cite
```tex
@article{devine2024sure,
title={Are You Sure? Rank Them Again: Repeated Ranking For Better Preference Datasets},
author={Devine, Peter},
journal={arXiv preprint arXiv:2405.18952},
year={2024}
}
```
# Developer
Peter Devine - ([ptrdvn](https://huggingface.co/ptrdvn))
|