File size: 17,545 Bytes
2bbe167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


suzume-llama-3-8B-multilingual-orpo-borda-top25 - GGUF
- Model creator: https://huggingface.co/lightblue/
- Original model: https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q2_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q2_K.gguf) | Q2_K | 2.96GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_S.gguf) | IQ3_S | 3.43GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ3_M.gguf) | IQ3_M | 3.52GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K.gguf) | Q3_K | 3.74GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_0.gguf) | Q4_0 | 4.34GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K.gguf) | Q4_K | 4.58GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_1.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q4_1.gguf) | Q4_1 | 4.78GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_0.gguf) | Q5_0 | 5.21GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K.gguf) | Q5_K | 5.34GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_1.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q5_1.gguf) | Q5_1 | 5.65GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q6_K.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q6_K.gguf) | Q6_K | 6.14GB |
| [suzume-llama-3-8B-multilingual-orpo-borda-top25.Q8_0.gguf](https://huggingface.co/RichardErkhov/lightblue_-_suzume-llama-3-8B-multilingual-orpo-borda-top25-gguf/blob/main/suzume-llama-3-8B-multilingual-orpo-borda-top25.Q8_0.gguf) | Q8_0 | 7.95GB |




Original model description:
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
base_model: lightblue/suzume-llama-3-8B-multilingual
model-index:
- name: workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda
  results: []
---

# Suzume ORPO

<p align="center">
  <img width=500 src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/kWQSu02YfgYdUQqv4s5lq.png" alt="Suzume with Mitsu - a Japanese tree sparrow with honey on it"/>
</p>

[[Paper]](https://arxiv.org/abs/2405.18952) [[Dataset]](https://huggingface.co/datasets/lightblue/mitsu)

This is Suzume ORPO, an ORPO trained fine-tune of the [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) model using our [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset.

We have trained several versions of this model using ORPO and so recommend that you use the best performing model from our tests, [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half).

Note that this model has a non-commerical license as we used the Command R and Command R+ models to generate our training data for this model ([lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu)).

We are currently working on a developing a commerically usable model, so stay tuned for that!

# Model list

We have ORPO trained the following models using different proportions of the [lightblue/mitsu](https://huggingface.co/datasets/lightblue/mitsu) dataset:
* Trained on the top/bottom responses of all prompts in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full)
* Trained on the top/bottom responses of the prompts of the 75\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75)
* Trained on the top/bottom responses of the prompts of the 50\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half)
* Trained on the top/bottom responses of the prompts of the 25\% most consistently ranked responses in the dataset: [lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25)

# Model results

We compare the MT-Bench scores across 6 languages for our 4 ORPO trained models, as well as some baselines:

* [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - The foundation model that our models are ultimately built upon
* [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) - The highest performing open model on the Chatbot arena that is of a similar size to ours
* gpt-3.5-turbo - A fairly high quality (although not state-of-the-art) proprietary LLM
* [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) - The base model which we train our ORPO finetunes from

| **MT-Bench language** | **meta-llama/Meta-Llama-3-8B-Instruct** | **Nexusflow/Starling-LM-7B-beta** | **gpt-3.5-turbo** | **lightblue/suzume-llama-3-8B-multilingual** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-full** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top75** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-half** | **lightblue/suzume-llama-3-8B-multilingual-orpo-borda-top25** |
|-----------------------|-----------------------------------------|-----------------------------------|-------------------|----------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| **Chinese πŸ‡¨πŸ‡³**        | NaN                                     | 6.97                              | 7.55              | 7.11                                         | 7.65                                                         | **7.77**                                                      | 7.74                                                         | 7.44                                                          |
| **English πŸ‡ΊπŸ‡Έ**        | 7.98                                    | 7.92                              | **8.26**          | 7.73                                         | 7.98                                                         | 7.94                                                          | 7.98                                                         | 8.22                                                          |
| **French πŸ‡«πŸ‡·**         | NaN                                     | 7.29                              | 7.74              | 7.66                                         | **7.84**                                                     | 7.46                                                          | 7.78                                                         | 7.81                                                          |
| **German πŸ‡©πŸ‡ͺ**         | NaN                                     | 6.99                              | 7.68              | 7.26                                         | 7.28                                                         | 7.64                                                          | 7.7                                                          | **7.71**                                                      |
| **Japanese πŸ‡―πŸ‡΅**       | NaN                                     | 6.22                              | **7.84**          | 6.56                                         | 7.2                                                          | 7.12                                                          | 7.34                                                         | 7.04                                                          |
| **Russian πŸ‡·πŸ‡Ί**        | NaN                                     | 8.28                              | 7.94              | 8.19                                         | 8.3                                                          | 8.74                                                          | **8.94**                                                     | 8.81                                                          |

We can see noticable improvement on most languages compared to the base model. We also find that our ORPO models achieve the highest score out of all the models we evaluated for a number of languages.

# Training data

We trained this model using the [lightblue/mitsu_full_borda](https://huggingface.co/datasets/lightblue/mitsu_full_borda) dataset.

# Training configuration


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: lightblue/suzume-llama-3-8B-multilingual
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer  # PreTrainedTokenizerFast

load_in_8bit: false
load_in_4bit: false
strict: false

rl: orpo
orpo_alpha: 0.1
remove_unused_columns: false

chat_template: chatml
datasets:
  - path: lightblue/mitsu_top25_borda
    type: orpo.chat_template
    conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_top25_borda
val_set_size: 0.02
output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda

sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true

use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: mitsu_top25_borda

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
special_tokens:
  pad_token: <|end_of_text|>
```

</details><br>

# workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top25_borda

This model is a fine-tuned version of [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0818

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.6328        | 0.05  | 1    | 7.7812          |
| 7.7158        | 0.1   | 2    | 7.2589          |
| 7.2588        | 0.15  | 3    | 4.0580          |
| 4.0068        | 0.19  | 4    | 2.4598          |
| 2.4438        | 0.24  | 5    | 0.6504          |
| 0.6586        | 0.29  | 6    | 0.1129          |
| 0.1235        | 0.34  | 7    | 0.1066          |
| 0.1273        | 0.39  | 8    | 0.1041          |
| 0.1076        | 0.44  | 9    | 0.0987          |
| 0.1009        | 0.48  | 10   | 0.0940          |
| 0.1172        | 0.53  | 11   | 0.0885          |
| 0.1016        | 0.58  | 12   | 0.0867          |
| 0.1088        | 0.63  | 13   | 0.0859          |
| 0.095         | 0.68  | 14   | 0.0846          |
| 0.1101        | 0.73  | 15   | 0.0839          |
| 0.0969        | 0.78  | 16   | 0.0832          |
| 0.0864        | 0.82  | 17   | 0.0825          |
| 0.0918        | 0.87  | 18   | 0.0821          |
| 0.0927        | 0.92  | 19   | 0.0819          |
| 0.0967        | 0.97  | 20   | 0.0818          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0

# How to cite

```tex
@article{devine2024sure,
  title={Are You Sure? Rank Them Again: Repeated Ranking For Better Preference Datasets},
  author={Devine, Peter},
  journal={arXiv preprint arXiv:2405.18952},
  year={2024}
}
```

# Developer

Peter Devine - ([ptrdvn](https://huggingface.co/ptrdvn))