--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5501 - Wer: 0.3424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5448 | 1.0 | 500 | 2.5044 | 1.0 | | 1.0167 | 2.01 | 1000 | 0.5435 | 0.5278 | | 0.4453 | 3.01 | 1500 | 0.4450 | 0.4534 | | 0.3 | 4.02 | 2000 | 0.4401 | 0.4245 | | 0.2304 | 5.02 | 2500 | 0.4146 | 0.4022 | | 0.1889 | 6.02 | 3000 | 0.4241 | 0.3927 | | 0.1573 | 7.03 | 3500 | 0.4545 | 0.3878 | | 0.1363 | 8.03 | 4000 | 0.4936 | 0.3940 | | 0.1213 | 9.04 | 4500 | 0.4964 | 0.3806 | | 0.108 | 10.04 | 5000 | 0.4931 | 0.3826 | | 0.0982 | 11.04 | 5500 | 0.5373 | 0.3778 | | 0.0883 | 12.05 | 6000 | 0.4978 | 0.3733 | | 0.0835 | 13.05 | 6500 | 0.5189 | 0.3728 | | 0.0748 | 14.06 | 7000 | 0.4608 | 0.3692 | | 0.068 | 15.06 | 7500 | 0.4827 | 0.3608 | | 0.0596 | 16.06 | 8000 | 0.5022 | 0.3661 | | 0.056 | 17.07 | 8500 | 0.5482 | 0.3646 | | 0.0565 | 18.07 | 9000 | 0.5158 | 0.3573 | | 0.0487 | 19.08 | 9500 | 0.4910 | 0.3513 | | 0.0444 | 20.08 | 10000 | 0.5771 | 0.3580 | | 0.045 | 21.08 | 10500 | 0.5160 | 0.3539 | | 0.0363 | 22.09 | 11000 | 0.5367 | 0.3503 | | 0.0313 | 23.09 | 11500 | 0.5773 | 0.3500 | | 0.0329 | 24.1 | 12000 | 0.5683 | 0.3508 | | 0.0297 | 25.1 | 12500 | 0.5355 | 0.3464 | | 0.0272 | 26.1 | 13000 | 0.5317 | 0.3450 | | 0.0256 | 27.11 | 13500 | 0.5602 | 0.3443 | | 0.0242 | 28.11 | 14000 | 0.5586 | 0.3419 | | 0.0239 | 29.12 | 14500 | 0.5501 | 0.3424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1