Dataset Viewer (First 5GB)
Auto-converted to Parquet
npz
dict
__key__
stringlengths
1
7
__url__
stringclasses
4 values
{"crop_ltrb":[0.0,0.0,1024.0,1024.0],"latents":[[[12.609375,8.4140625,7.21875,7.1132812,7.0351562,7.(...TRUNCATED)
1000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,11.0,832.0,1011.2257053291536],"latents":[[[-7.8046875,-8.1796875,-10.484375,-10.7(...TRUNCATED)
2000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[19.0,0.0,1004.0100200400801,768.0],"latents":[[[2.0273438,1.3447266,1.2744141,0.532226(...TRUNCATED)
3000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,0.0,1024.0,768.0],"latents":[[[-6.5859375,-4.0546875,-4.9882812,-1.6279297,-6.5468(...TRUNCATED)
5000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[12.0,0.0,882.1875518672199,1024.0],"latents":[[[-2.9785156,-2.4003906,1.6777344,4.6757(...TRUNCATED)
6000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,14.0,704.0,1008.7826086956521],"latents":[[[3.0058594,-0.10455322,0.9433594,7.5117(...TRUNCATED)
7000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,4.0,832.0,1018.6341463414635],"latents":[[[19.53125,19.40625,17.859375,17.6875,17.(...TRUNCATED)
8000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,18.0,704.0,1004.2068965517242],"latents":[[[6.484375,7.3164062,5.2265625,3.7324219(...TRUNCATED)
9000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,19.0,704.0,1004.6],"latents":[[[17.953125,17.71875,21.28125,4.8671875,21.484375,17(...TRUNCATED)
10000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
{"crop_ltrb":[0.0,0.0,702.423645320197,1024.0],"latents":[[[19.1875,19.171875,17.640625,17.453125,17(...TRUNCATED)
11000
"hf://datasets/6DammK9/danbooru2024-latents-sdxl-1ktar@a8941749f3a93a55494e71c21d8cbc78d0dedaa1/late(...TRUNCATED)
End of preview. Expand in Data Studio

Danbooru 2024 SDXL VAE latents in 1k tar

> python ../sd-scripts-runtime/pack_npz.py --npz_dir="H:/danbooru2024-webp-4Mpixel/kohyas_finetune" --meta_json="H:/danbooru2024-webp-4Mpixel/meta_cap_dd.json" --tar_dir="G:/npz_latents/danbooru_sdxl"
Found entries: 8005010
Max ID in the dataset: 8360499
packing npz files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1000/1000 [4:02:08<00:00, 14.53s/it]
Files written: 1000
Detected npz: 8005010.

Extra: 12.5M Merged dataset for both danbooru and e621

#250225: Relative to --train_data_dir="/tmp/dataset"
FOLDER_A = "danbooru/"
FOLDER_B = "e621/"

merged = {}

def cast_a(k):
    return f"{FOLDER_A}{k}"

def cast_b(k):
    return f"{FOLDER_B}{k}"
  • One of the best apporach is create a nested folder like /tmp/dataset/danbooru and /tmp/dataset/e621. Kohyas (torch.data.DataLoader) will support localized path.
Downloads last month
15