Dataset Viewer (First 5GB)
Auto-converted to Parquet
npz
dict
__key__
stringlengths
4
7
__url__
stringclasses
6 values
{"crop_ltrb":[1.0,0.0,509.16,1024.0],"latents":[[[13.8828125,11.1015625,13.125,9.4609375,11.8046875,(...TRUNCATED)
3000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[11.0,0.0,819.8467614533965,1024.0],"latents":[[[-12.5234375,-1.0761719,5.1171875,-6.0,(...TRUNCATED)
4000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[1.0,0.0,1022.0232558139535,768.0],"latents":[[[19.65625,19.484375,17.84375,17.6875,17.(...TRUNCATED)
5000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[0.0,17.0,768.0,1006.184],"latents":[[[21.25,18.890625,17.640625,17.46875,17.46875,17.4(...TRUNCATED)
6000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[0.0,15.0,896.0,1007.4131994261119],"latents":[[[19.015625,18.5625,17.671875,17.375,17.(...TRUNCATED)
7000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[6.0,0.0,760.8519637462235,1024.0],"latents":[[[20.890625,18.75,17.546875,17.34375,17.3(...TRUNCATED)
8000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[0.0,0.0,1024.0,1024.0],"latents":[[[2.015625,1.0566406,0.119506836,-1.1894531,-0.09436(...TRUNCATED)
10000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[0.0,12.0,640.0,1012.0],"latents":[[[3.4863281,-0.48632812,0.46484375,0.6791992,2.25,0.(...TRUNCATED)
11000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[0.0,8.0,1024.0,759.2],"latents":[[[21.21875,18.03125,17.53125,17.203125,17.21875,17.23(...TRUNCATED)
12000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
{"crop_ltrb":[0.0,0.0,767.0889679715302,1024.0],"latents":[[[14.4296875,13.4921875,12.7109375,17.265(...TRUNCATED)
13000
"hf://datasets/6DammK9/e621_2024-latents-sdxl-1ktar@c21ec2741c70ad4c68288c6fc3b4f12c882f4cec/latents(...TRUNCATED)
End of preview. Expand in Data Studio

E621 2024 SDXL VAE latents in 1k tar

Extra: 12.5M Merged dataset for both danbooru and e621

#250225: Relative to --train_data_dir="/tmp/dataset"
FOLDER_A = "danbooru/"
FOLDER_B = "e621/"

merged = {}

def cast_a(k):
    return f"{FOLDER_A}{k}"

def cast_b(k):
    return f"{FOLDER_B}{k}"
  • One of the best apporach is create a nested folder like /tmp/dataset/danbooru and /tmp/dataset/e621. Kohyas (torch.data.DataLoader) will support localized path.
Downloads last month
7