File size: 38,284 Bytes
c71fb67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/MahmoudAshraf97/whisper-diarization/blob/main/Whisper_Transcription_%2B_NeMo_Diarization.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "eCmjcOc9yEtQ"
},
"source": [
"# Installing Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Tn1c-CoDv2kw"
},
"outputs": [],
"source": [
"!pip install git+https://github.com/m-bain/whisperX.git@a5dca2cc65b1a37f32a347e574b2c56af3a7434a\n",
"!pip install --no-build-isolation nemo_toolkit[asr]==1.21.0\n",
"!pip install git+https://github.com/facebookresearch/demucs#egg=demucs\n",
"!pip install deepmultilingualpunctuation\n",
"!pip install wget pydub\n",
"!pip install --force-reinstall torch torchaudio torchvision\n",
"!pip uninstall -y nvidia-cudnn-cu12\n",
"!pip install numba==0.58.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YzhncHP0ytbQ"
},
"outputs": [],
"source": [
"import os\n",
"import wget\n",
"from omegaconf import OmegaConf\n",
"import json\n",
"import shutil\n",
"from faster_whisper import WhisperModel\n",
"import whisperx\n",
"import torch\n",
"from pydub import AudioSegment\n",
"from nemo.collections.asr.models.msdd_models import NeuralDiarizer\n",
"from deepmultilingualpunctuation import PunctuationModel\n",
"import re\n",
"import logging\n",
"import nltk\n",
"from whisperx.alignment import DEFAULT_ALIGN_MODELS_HF, DEFAULT_ALIGN_MODELS_TORCH\n",
"from whisperx.utils import LANGUAGES, TO_LANGUAGE_CODE"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "jbsUt3SwyhjD"
},
"source": [
"# Helper Functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Se6Hc7CZygxu"
},
"outputs": [],
"source": [
"punct_model_langs = [\n",
" \"en\",\n",
" \"fr\",\n",
" \"de\",\n",
" \"es\",\n",
" \"it\",\n",
" \"nl\",\n",
" \"pt\",\n",
" \"bg\",\n",
" \"pl\",\n",
" \"cs\",\n",
" \"sk\",\n",
" \"sl\",\n",
"]\n",
"wav2vec2_langs = list(DEFAULT_ALIGN_MODELS_TORCH.keys()) + list(\n",
" DEFAULT_ALIGN_MODELS_HF.keys()\n",
")\n",
"\n",
"whisper_langs = sorted(LANGUAGES.keys()) + sorted(\n",
" [k.title() for k in TO_LANGUAGE_CODE.keys()]\n",
")\n",
"\n",
"\n",
"def create_config(output_dir):\n",
" DOMAIN_TYPE = \"telephonic\" # Can be meeting, telephonic, or general based on domain type of the audio file\n",
" CONFIG_FILE_NAME = f\"diar_infer_{DOMAIN_TYPE}.yaml\"\n",
" CONFIG_URL = f\"https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/speaker_tasks/diarization/conf/inference/{CONFIG_FILE_NAME}\"\n",
" MODEL_CONFIG = os.path.join(output_dir, CONFIG_FILE_NAME)\n",
" if not os.path.exists(MODEL_CONFIG):\n",
" MODEL_CONFIG = wget.download(CONFIG_URL, output_dir)\n",
"\n",
" config = OmegaConf.load(MODEL_CONFIG)\n",
"\n",
" data_dir = os.path.join(output_dir, \"data\")\n",
" os.makedirs(data_dir, exist_ok=True)\n",
"\n",
" meta = {\n",
" \"audio_filepath\": os.path.join(output_dir, \"mono_file.wav\"),\n",
" \"offset\": 0,\n",
" \"duration\": None,\n",
" \"label\": \"infer\",\n",
" \"text\": \"-\",\n",
" \"rttm_filepath\": None,\n",
" \"uem_filepath\": None,\n",
" }\n",
" with open(os.path.join(data_dir, \"input_manifest.json\"), \"w\") as fp:\n",
" json.dump(meta, fp)\n",
" fp.write(\"\\n\")\n",
"\n",
" pretrained_vad = \"vad_multilingual_marblenet\"\n",
" pretrained_speaker_model = \"titanet_large\"\n",
" config.num_workers = 0 # Workaround for multiprocessing hanging with ipython issue\n",
" config.diarizer.manifest_filepath = os.path.join(data_dir, \"input_manifest.json\")\n",
" config.diarizer.out_dir = (\n",
" output_dir # Directory to store intermediate files and prediction outputs\n",
" )\n",
"\n",
" config.diarizer.speaker_embeddings.model_path = pretrained_speaker_model\n",
" config.diarizer.oracle_vad = (\n",
" False # compute VAD provided with model_path to vad config\n",
" )\n",
" config.diarizer.clustering.parameters.oracle_num_speakers = False\n",
"\n",
" # Here, we use our in-house pretrained NeMo VAD model\n",
" config.diarizer.vad.model_path = pretrained_vad\n",
" config.diarizer.vad.parameters.onset = 0.8\n",
" config.diarizer.vad.parameters.offset = 0.6\n",
" config.diarizer.vad.parameters.pad_offset = -0.05\n",
" config.diarizer.msdd_model.model_path = (\n",
" \"diar_msdd_telephonic\" # Telephonic speaker diarization model\n",
" )\n",
"\n",
" return config\n",
"\n",
"\n",
"def get_word_ts_anchor(s, e, option=\"start\"):\n",
" if option == \"end\":\n",
" return e\n",
" elif option == \"mid\":\n",
" return (s + e) / 2\n",
" return s\n",
"\n",
"\n",
"def get_words_speaker_mapping(wrd_ts, spk_ts, word_anchor_option=\"start\"):\n",
" s, e, sp = spk_ts[0]\n",
" wrd_pos, turn_idx = 0, 0\n",
" wrd_spk_mapping = []\n",
" for wrd_dict in wrd_ts:\n",
" ws, we, wrd = (\n",
" int(wrd_dict[\"start\"] * 1000),\n",
" int(wrd_dict[\"end\"] * 1000),\n",
" wrd_dict[\"word\"],\n",
" )\n",
" wrd_pos = get_word_ts_anchor(ws, we, word_anchor_option)\n",
" while wrd_pos > float(e):\n",
" turn_idx += 1\n",
" turn_idx = min(turn_idx, len(spk_ts) - 1)\n",
" s, e, sp = spk_ts[turn_idx]\n",
" if turn_idx == len(spk_ts) - 1:\n",
" e = get_word_ts_anchor(ws, we, option=\"end\")\n",
" wrd_spk_mapping.append(\n",
" {\"word\": wrd, \"start_time\": ws, \"end_time\": we, \"speaker\": sp}\n",
" )\n",
" return wrd_spk_mapping\n",
"\n",
"\n",
"sentence_ending_punctuations = \".?!\"\n",
"\n",
"\n",
"def get_first_word_idx_of_sentence(word_idx, word_list, speaker_list, max_words):\n",
" is_word_sentence_end = (\n",
" lambda x: x >= 0 and word_list[x][-1] in sentence_ending_punctuations\n",
" )\n",
" left_idx = word_idx\n",
" while (\n",
" left_idx > 0\n",
" and word_idx - left_idx < max_words\n",
" and speaker_list[left_idx - 1] == speaker_list[left_idx]\n",
" and not is_word_sentence_end(left_idx - 1)\n",
" ):\n",
" left_idx -= 1\n",
"\n",
" return left_idx if left_idx == 0 or is_word_sentence_end(left_idx - 1) else -1\n",
"\n",
"\n",
"def get_last_word_idx_of_sentence(word_idx, word_list, max_words):\n",
" is_word_sentence_end = (\n",
" lambda x: x >= 0 and word_list[x][-1] in sentence_ending_punctuations\n",
" )\n",
" right_idx = word_idx\n",
" while (\n",
" right_idx < len(word_list)\n",
" and right_idx - word_idx < max_words\n",
" and not is_word_sentence_end(right_idx)\n",
" ):\n",
" right_idx += 1\n",
"\n",
" return (\n",
" right_idx\n",
" if right_idx == len(word_list) - 1 or is_word_sentence_end(right_idx)\n",
" else -1\n",
" )\n",
"\n",
"\n",
"def get_realigned_ws_mapping_with_punctuation(\n",
" word_speaker_mapping, max_words_in_sentence=50\n",
"):\n",
" is_word_sentence_end = (\n",
" lambda x: x >= 0\n",
" and word_speaker_mapping[x][\"word\"][-1] in sentence_ending_punctuations\n",
" )\n",
" wsp_len = len(word_speaker_mapping)\n",
"\n",
" words_list, speaker_list = [], []\n",
" for k, line_dict in enumerate(word_speaker_mapping):\n",
" word, speaker = line_dict[\"word\"], line_dict[\"speaker\"]\n",
" words_list.append(word)\n",
" speaker_list.append(speaker)\n",
"\n",
" k = 0\n",
" while k < len(word_speaker_mapping):\n",
" line_dict = word_speaker_mapping[k]\n",
" if (\n",
" k < wsp_len - 1\n",
" and speaker_list[k] != speaker_list[k + 1]\n",
" and not is_word_sentence_end(k)\n",
" ):\n",
" left_idx = get_first_word_idx_of_sentence(\n",
" k, words_list, speaker_list, max_words_in_sentence\n",
" )\n",
" right_idx = (\n",
" get_last_word_idx_of_sentence(\n",
" k, words_list, max_words_in_sentence - k + left_idx - 1\n",
" )\n",
" if left_idx > -1\n",
" else -1\n",
" )\n",
" if min(left_idx, right_idx) == -1:\n",
" k += 1\n",
" continue\n",
"\n",
" spk_labels = speaker_list[left_idx : right_idx + 1]\n",
" mod_speaker = max(set(spk_labels), key=spk_labels.count)\n",
" if spk_labels.count(mod_speaker) < len(spk_labels) // 2:\n",
" k += 1\n",
" continue\n",
"\n",
" speaker_list[left_idx : right_idx + 1] = [mod_speaker] * (\n",
" right_idx - left_idx + 1\n",
" )\n",
" k = right_idx\n",
"\n",
" k += 1\n",
"\n",
" k, realigned_list = 0, []\n",
" while k < len(word_speaker_mapping):\n",
" line_dict = word_speaker_mapping[k].copy()\n",
" line_dict[\"speaker\"] = speaker_list[k]\n",
" realigned_list.append(line_dict)\n",
" k += 1\n",
"\n",
" return realigned_list\n",
"\n",
"\n",
"def get_sentences_speaker_mapping(word_speaker_mapping, spk_ts):\n",
" sentence_checker = nltk.tokenize.PunktSentenceTokenizer().text_contains_sentbreak\n",
" s, e, spk = spk_ts[0]\n",
" prev_spk = spk\n",
"\n",
" snts = []\n",
" snt = {\"speaker\": f\"Speaker {spk}\", \"start_time\": s, \"end_time\": e, \"text\": \"\"}\n",
"\n",
" for wrd_dict in word_speaker_mapping:\n",
" wrd, spk = wrd_dict[\"word\"], wrd_dict[\"speaker\"]\n",
" s, e = wrd_dict[\"start_time\"], wrd_dict[\"end_time\"]\n",
" if spk != prev_spk or sentence_checker(snt[\"text\"] + \" \" + wrd):\n",
" snts.append(snt)\n",
" snt = {\n",
" \"speaker\": f\"Speaker {spk}\",\n",
" \"start_time\": s,\n",
" \"end_time\": e,\n",
" \"text\": \"\",\n",
" }\n",
" else:\n",
" snt[\"end_time\"] = e\n",
" snt[\"text\"] += wrd + \" \"\n",
" prev_spk = spk\n",
"\n",
" snts.append(snt)\n",
" return snts\n",
"\n",
"\n",
"def get_speaker_aware_transcript(sentences_speaker_mapping, f):\n",
" previous_speaker = sentences_speaker_mapping[0][\"speaker\"]\n",
" f.write(f\"{previous_speaker}: \")\n",
"\n",
" for sentence_dict in sentences_speaker_mapping:\n",
" speaker = sentence_dict[\"speaker\"]\n",
" sentence = sentence_dict[\"text\"]\n",
"\n",
" # If this speaker doesn't match the previous one, start a new paragraph\n",
" if speaker != previous_speaker:\n",
" f.write(f\"\\n\\n{speaker}: \")\n",
" previous_speaker = speaker\n",
"\n",
" # No matter what, write the current sentence\n",
" f.write(sentence + \" \")\n",
"\n",
"\n",
"def format_timestamp(\n",
" milliseconds: float, always_include_hours: bool = False, decimal_marker: str = \".\"\n",
"):\n",
" assert milliseconds >= 0, \"non-negative timestamp expected\"\n",
"\n",
" hours = milliseconds // 3_600_000\n",
" milliseconds -= hours * 3_600_000\n",
"\n",
" minutes = milliseconds // 60_000\n",
" milliseconds -= minutes * 60_000\n",
"\n",
" seconds = milliseconds // 1_000\n",
" milliseconds -= seconds * 1_000\n",
"\n",
" hours_marker = f\"{hours:02d}:\" if always_include_hours or hours > 0 else \"\"\n",
" return (\n",
" f\"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}\"\n",
" )\n",
"\n",
"\n",
"def write_srt(transcript, file):\n",
" \"\"\"\n",
" Write a transcript to a file in SRT format.\n",
"\n",
" \"\"\"\n",
" for i, segment in enumerate(transcript, start=1):\n",
" # write srt lines\n",
" print(\n",
" f\"{i}\\n\"\n",
" f\"{format_timestamp(segment['start_time'], always_include_hours=True, decimal_marker=',')} --> \"\n",
" f\"{format_timestamp(segment['end_time'], always_include_hours=True, decimal_marker=',')}\\n\"\n",
" f\"{segment['speaker']}: {segment['text'].strip().replace('-->', '->')}\\n\",\n",
" file=file,\n",
" flush=True,\n",
" )\n",
"\n",
"\n",
"def find_numeral_symbol_tokens(tokenizer):\n",
" numeral_symbol_tokens = [\n",
" -1,\n",
" ]\n",
" for token, token_id in tokenizer.get_vocab().items():\n",
" has_numeral_symbol = any(c in \"0123456789%$£\" for c in token)\n",
" if has_numeral_symbol:\n",
" numeral_symbol_tokens.append(token_id)\n",
" return numeral_symbol_tokens\n",
"\n",
"\n",
"def _get_next_start_timestamp(word_timestamps, current_word_index, final_timestamp):\n",
" # if current word is the last word\n",
" if current_word_index == len(word_timestamps) - 1:\n",
" return word_timestamps[current_word_index][\"start\"]\n",
"\n",
" next_word_index = current_word_index + 1\n",
" while current_word_index < len(word_timestamps) - 1:\n",
" if word_timestamps[next_word_index].get(\"start\") is None:\n",
" # if next word doesn't have a start timestamp\n",
" # merge it with the current word and delete it\n",
" word_timestamps[current_word_index][\"word\"] += (\n",
" \" \" + word_timestamps[next_word_index][\"word\"]\n",
" )\n",
"\n",
" word_timestamps[next_word_index][\"word\"] = None\n",
" next_word_index += 1\n",
" if next_word_index == len(word_timestamps):\n",
" return final_timestamp\n",
"\n",
" else:\n",
" return word_timestamps[next_word_index][\"start\"]\n",
"\n",
"\n",
"def filter_missing_timestamps(\n",
" word_timestamps, initial_timestamp=0, final_timestamp=None\n",
"):\n",
" # handle the first and last word\n",
" if word_timestamps[0].get(\"start\") is None:\n",
" word_timestamps[0][\"start\"] = (\n",
" initial_timestamp if initial_timestamp is not None else 0\n",
" )\n",
" word_timestamps[0][\"end\"] = _get_next_start_timestamp(\n",
" word_timestamps, 0, final_timestamp\n",
" )\n",
"\n",
" result = [\n",
" word_timestamps[0],\n",
" ]\n",
"\n",
" for i, ws in enumerate(word_timestamps[1:], start=1):\n",
" # if ws doesn't have a start and end\n",
" # use the previous end as start and next start as end\n",
" if ws.get(\"start\") is None and ws.get(\"word\") is not None:\n",
" ws[\"start\"] = word_timestamps[i - 1][\"end\"]\n",
" ws[\"end\"] = _get_next_start_timestamp(word_timestamps, i, final_timestamp)\n",
"\n",
" if ws[\"word\"] is not None:\n",
" result.append(ws)\n",
" return result\n",
"\n",
"\n",
"def cleanup(path: str):\n",
" \"\"\"path could either be relative or absolute.\"\"\"\n",
" # check if file or directory exists\n",
" if os.path.isfile(path) or os.path.islink(path):\n",
" # remove file\n",
" os.remove(path)\n",
" elif os.path.isdir(path):\n",
" # remove directory and all its content\n",
" shutil.rmtree(path)\n",
" else:\n",
" raise ValueError(\"Path {} is not a file or dir.\".format(path))\n",
"\n",
"\n",
"def process_language_arg(language: str, model_name: str):\n",
" \"\"\"\n",
" Process the language argument to make sure it's valid and convert language names to language codes.\n",
" \"\"\"\n",
" if language is not None:\n",
" language = language.lower()\n",
" if language not in LANGUAGES:\n",
" if language in TO_LANGUAGE_CODE:\n",
" language = TO_LANGUAGE_CODE[language]\n",
" else:\n",
" raise ValueError(f\"Unsupported language: {language}\")\n",
"\n",
" if model_name.endswith(\".en\") and language != \"en\":\n",
" if language is not None:\n",
" logging.warning(\n",
" f\"{model_name} is an English-only model but received '{language}'; using English instead.\"\n",
" )\n",
" language = \"en\"\n",
" return language\n",
"\n",
"\n",
"def transcribe(\n",
" audio_file: str,\n",
" language: str,\n",
" model_name: str,\n",
" compute_dtype: str,\n",
" suppress_numerals: bool,\n",
" device: str,\n",
"):\n",
" from faster_whisper import WhisperModel\n",
" from helpers import find_numeral_symbol_tokens, wav2vec2_langs\n",
"\n",
" # Faster Whisper non-batched\n",
" # Run on GPU with FP16\n",
" whisper_model = WhisperModel(model_name, device=device, compute_type=compute_dtype)\n",
"\n",
" # or run on GPU with INT8\n",
" # model = WhisperModel(model_size, device=\"cuda\", compute_type=\"int8_float16\")\n",
" # or run on CPU with INT8\n",
" # model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")\n",
"\n",
" if suppress_numerals:\n",
" numeral_symbol_tokens = find_numeral_symbol_tokens(whisper_model.hf_tokenizer)\n",
" else:\n",
" numeral_symbol_tokens = None\n",
"\n",
" if language is not None and language in wav2vec2_langs:\n",
" word_timestamps = False\n",
" else:\n",
" word_timestamps = True\n",
"\n",
" segments, info = whisper_model.transcribe(\n",
" audio_file,\n",
" language=language,\n",
" beam_size=5,\n",
" word_timestamps=word_timestamps, # TODO: disable this if the language is supported by wav2vec2\n",
" suppress_tokens=numeral_symbol_tokens,\n",
" vad_filter=True,\n",
" )\n",
" whisper_results = []\n",
" for segment in segments:\n",
" whisper_results.append(segment._asdict())\n",
" # clear gpu vram\n",
" del whisper_model\n",
" torch.cuda.empty_cache()\n",
" return whisper_results, language\n",
"\n",
"\n",
"def transcribe_batched(\n",
" audio_file: str,\n",
" language: str,\n",
" batch_size: int,\n",
" model_name: str,\n",
" compute_dtype: str,\n",
" suppress_numerals: bool,\n",
" device: str,\n",
"):\n",
" import whisperx\n",
"\n",
" # Faster Whisper batched\n",
" whisper_model = whisperx.load_model(\n",
" model_name,\n",
" device,\n",
" compute_type=compute_dtype,\n",
" asr_options={\"suppress_numerals\": suppress_numerals},\n",
" )\n",
" audio = whisperx.load_audio(audio_file)\n",
" result = whisper_model.transcribe(audio, language=language, batch_size=batch_size)\n",
" del whisper_model\n",
" torch.cuda.empty_cache()\n",
" return result[\"segments\"], result[\"language\"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "B7qWQb--1Xcw"
},
"source": [
"# Options"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ONlFrSnD0FOp"
},
"outputs": [],
"source": [
"# Name of the audio file\n",
"audio_path = \"20200128-Pieter Wuille (part 1 of 2) - Episode 1.mp3\"\n",
"\n",
"# Whether to enable music removal from speech, helps increase diarization quality but uses alot of ram\n",
"enable_stemming = True\n",
"\n",
"# (choose from 'tiny.en', 'tiny', 'base.en', 'base', 'small.en', 'small', 'medium.en', 'medium', 'large-v1', 'large-v2', 'large-v3', 'large')\n",
"whisper_model_name = \"large-v2\"\n",
"\n",
"# replaces numerical digits with their pronounciation, increases diarization accuracy\n",
"suppress_numerals = True\n",
"\n",
"batch_size = 8\n",
"\n",
"language = None # autodetect language\n",
"\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "h-cY1ZEy2KVI"
},
"source": [
"# Processing"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "7ZS4xXmE2NGP"
},
"source": [
"## Separating music from speech using Demucs\n",
"\n",
"---\n",
"\n",
"By isolating the vocals from the rest of the audio, it becomes easier to identify and track individual speakers based on the spectral and temporal characteristics of their speech signals. Source separation is just one of many techniques that can be used as a preprocessing step to help improve the accuracy and reliability of the overall diarization process."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "HKcgQUrAzsJZ",
"outputId": "dc2a1d96-20da-4749-9d64-21edacfba1b1"
},
"outputs": [],
"source": [
"if enable_stemming:\n",
" # Isolate vocals from the rest of the audio\n",
"\n",
" return_code = os.system(\n",
" f'python3 -m demucs.separate -n htdemucs --two-stems=vocals \"{audio_path}\" -o \"temp_outputs\"'\n",
" )\n",
"\n",
" if return_code != 0:\n",
" logging.warning(\"Source splitting failed, using original audio file.\")\n",
" vocal_target = audio_path\n",
" else:\n",
" vocal_target = os.path.join(\n",
" \"temp_outputs\",\n",
" \"htdemucs\",\n",
" os.path.splitext(os.path.basename(audio_path))[0],\n",
" \"vocals.wav\",\n",
" )\n",
"else:\n",
" vocal_target = audio_path"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "UYg9VWb22Tz8"
},
"source": [
"## Transcriping audio using Whisper and realligning timestamps using Wav2Vec2\n",
"---\n",
"This code uses two different open-source models to transcribe speech and perform forced alignment on the resulting transcription.\n",
"\n",
"The first model is called OpenAI Whisper, which is a speech recognition model that can transcribe speech with high accuracy. The code loads the whisper model and uses it to transcribe the vocal_target file.\n",
"\n",
"The output of the transcription process is a set of text segments with corresponding timestamps indicating when each segment was spoken.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5-VKFn530oTl"
},
"outputs": [],
"source": [
"compute_type = \"float16\"\n",
"# or run on GPU with INT8\n",
"# compute_type = \"int8_float16\"\n",
"# or run on CPU with INT8\n",
"# compute_type = \"int8\"\n",
"\n",
"if batch_size != 0:\n",
" whisper_results, language = transcribe_batched(\n",
" vocal_target,\n",
" language,\n",
" batch_size,\n",
" whisper_model_name,\n",
" compute_type,\n",
" suppress_numerals,\n",
" device,\n",
" )\n",
"else:\n",
" whisper_results, language = transcribe(\n",
" vocal_target,\n",
" language,\n",
" whisper_model_name,\n",
" compute_type,\n",
" suppress_numerals,\n",
" device,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Aligning the transcription with the original audio using Wav2Vec2\n",
"---\n",
"The second model used is called wav2vec2, which is a large-scale neural network that is designed to learn representations of speech that are useful for a variety of speech processing tasks, including speech recognition and alignment.\n",
"\n",
"The code loads the wav2vec2 alignment model and uses it to align the transcription segments with the original audio signal contained in the vocal_target file. This process involves finding the exact timestamps in the audio signal where each segment was spoken and aligning the text accordingly.\n",
"\n",
"By combining the outputs of the two models, the code produces a fully aligned transcription of the speech contained in the vocal_target file. This aligned transcription can be useful for a variety of speech processing tasks, such as speaker diarization, sentiment analysis, and language identification.\n",
"\n",
"If there's no Wav2Vec2 model available for your language, word timestamps generated by whisper will be used instead."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if language in wav2vec2_langs:\n",
" device = \"cuda\"\n",
" alignment_model, metadata = whisperx.load_align_model(\n",
" language_code=language, device=device\n",
" )\n",
" result_aligned = whisperx.align(\n",
" whisper_results, alignment_model, metadata, vocal_target, device\n",
" )\n",
" word_timestamps = filter_missing_timestamps(\n",
" result_aligned[\"word_segments\"],\n",
" initial_timestamp=whisper_results[0].get(\"start\"),\n",
" final_timestamp=whisper_results[-1].get(\"end\"),\n",
" )\n",
"\n",
" # clear gpu vram\n",
" del alignment_model\n",
" torch.cuda.empty_cache()\n",
"else:\n",
" assert batch_size == 0, ( # TODO: add a better check for word timestamps existence\n",
" f\"Unsupported language: {language}, use --batch_size to 0\"\n",
" \" to generate word timestamps using whisper directly and fix this error.\"\n",
" )\n",
" word_timestamps = []\n",
" for segment in whisper_results:\n",
" for word in segment[\"words\"]:\n",
" word_timestamps.append({\"word\": word[2], \"start\": word[0], \"end\": word[1]})"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "7EEaJPsQ21Rx"
},
"source": [
"## Convert audio to mono for NeMo combatibility"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sound = AudioSegment.from_file(vocal_target).set_channels(1)\n",
"ROOT = os.getcwd()\n",
"temp_path = os.path.join(ROOT, \"temp_outputs\")\n",
"os.makedirs(temp_path, exist_ok=True)\n",
"sound.export(os.path.join(temp_path, \"mono_file.wav\"), format=\"wav\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "D1gkViCf2-CV"
},
"source": [
"## Speaker Diarization using NeMo MSDD Model\n",
"---\n",
"This code uses a model called Nvidia NeMo MSDD (Multi-scale Diarization Decoder) to perform speaker diarization on an audio signal. Speaker diarization is the process of separating an audio signal into different segments based on who is speaking at any given time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "C7jIpBCH02RL"
},
"outputs": [],
"source": [
"# Initialize NeMo MSDD diarization model\n",
"msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(\"cuda\")\n",
"msdd_model.diarize()\n",
"\n",
"del msdd_model\n",
"torch.cuda.empty_cache()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "NmkZYaDAEOAg"
},
"source": [
"## Mapping Spekers to Sentences According to Timestamps"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "E65LUGQe02zw"
},
"outputs": [],
"source": [
"# Reading timestamps <> Speaker Labels mapping\n",
"\n",
"speaker_ts = []\n",
"with open(os.path.join(temp_path, \"pred_rttms\", \"mono_file.rttm\"), \"r\") as f:\n",
" lines = f.readlines()\n",
" for line in lines:\n",
" line_list = line.split(\" \")\n",
" s = int(float(line_list[5]) * 1000)\n",
" e = s + int(float(line_list[8]) * 1000)\n",
" speaker_ts.append([s, e, int(line_list[11].split(\"_\")[-1])])\n",
"\n",
"wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, \"start\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "8Ruxc8S1EXtW"
},
"source": [
"## Realligning Speech segments using Punctuation\n",
"---\n",
"\n",
"This code provides a method for disambiguating speaker labels in cases where a sentence is split between two different speakers. It uses punctuation markings to determine the dominant speaker for each sentence in the transcription.\n",
"\n",
"```\n",
"Speaker A: It's got to come from somewhere else. Yeah, that one's also fun because you know the lows are\n",
"Speaker B: going to suck, right? So it's actually it hits you on both sides.\n",
"```\n",
"\n",
"For example, if a sentence is split between two speakers, the code takes the mode of speaker labels for each word in the sentence, and uses that speaker label for the whole sentence. This can help to improve the accuracy of speaker diarization, especially in cases where the Whisper model may not take fine utterances like \"hmm\" and \"yeah\" into account, but the Diarization Model (Nemo) may include them, leading to inconsistent results.\n",
"\n",
"The code also handles cases where one speaker is giving a monologue while other speakers are making occasional comments in the background. It ignores the comments and assigns the entire monologue to the speaker who is speaking the majority of the time. This provides a robust and reliable method for realigning speech segments to their respective speakers based on punctuation in the transcription."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pgfC5hA41BXu"
},
"outputs": [],
"source": [
"if language in punct_model_langs:\n",
" # restoring punctuation in the transcript to help realign the sentences\n",
" punct_model = PunctuationModel(model=\"kredor/punctuate-all\")\n",
"\n",
" words_list = list(map(lambda x: x[\"word\"], wsm))\n",
"\n",
" labled_words = punct_model.predict(words_list)\n",
"\n",
" ending_puncts = \".?!\"\n",
" model_puncts = \".,;:!?\"\n",
"\n",
" # We don't want to punctuate U.S.A. with a period. Right?\n",
" is_acronym = lambda x: re.fullmatch(r\"\\b(?:[a-zA-Z]\\.){2,}\", x)\n",
"\n",
" for word_dict, labeled_tuple in zip(wsm, labled_words):\n",
" word = word_dict[\"word\"]\n",
" if (\n",
" word\n",
" and labeled_tuple[1] in ending_puncts\n",
" and (word[-1] not in model_puncts or is_acronym(word))\n",
" ):\n",
" word += labeled_tuple[1]\n",
" if word.endswith(\"..\"):\n",
" word = word.rstrip(\".\")\n",
" word_dict[\"word\"] = word\n",
"\n",
"else:\n",
" logging.warning(\n",
" f\"Punctuation restoration is not available for {language} language. Using the original punctuation.\"\n",
" )\n",
"\n",
"wsm = get_realigned_ws_mapping_with_punctuation(wsm)\n",
"ssm = get_sentences_speaker_mapping(wsm, speaker_ts)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "vF2QAtLOFvwZ"
},
"source": [
"## Cleanup and Exporing the results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "kFTyKI6B1MI0"
},
"outputs": [],
"source": [
"with open(f\"{os.path.splitext(audio_path)[0]}.txt\", \"w\", encoding=\"utf-8-sig\") as f:\n",
" get_speaker_aware_transcript(ssm, f)\n",
"\n",
"with open(f\"{os.path.splitext(audio_path)[0]}.srt\", \"w\", encoding=\"utf-8-sig\") as srt:\n",
" write_srt(ssm, srt)\n",
"\n",
"cleanup(temp_path)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"authorship_tag": "ABX9TyOyiQNkD+ROzss634BOsrSh",
"collapsed_sections": [
"eCmjcOc9yEtQ",
"jbsUt3SwyhjD"
],
"include_colab_link": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|