File size: 5,993 Bytes
c71fb67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import argparse
import os
from helpers import *
from faster_whisper import WhisperModel
import whisperx
import torch
from deepmultilingualpunctuation import PunctuationModel
import re
import subprocess
import logging
mtypes = {"cpu": "int8", "cuda": "float16"}
# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument(
"-a", "--audio", help="name of the target audio file", required=True
)
parser.add_argument(
"--no-stem",
action="store_false",
dest="stemming",
default=True,
help="Disables source separation."
"This helps with long files that don't contain a lot of music.",
)
parser.add_argument(
"--suppress_numerals",
action="store_true",
dest="suppress_numerals",
default=False,
help="Suppresses Numerical Digits."
"This helps the diarization accuracy but converts all digits into written text.",
)
parser.add_argument(
"--whisper-model",
dest="model_name",
default="medium.en",
help="name of the Whisper model to use",
)
parser.add_argument(
"--batch-size",
type=int,
dest="batch_size",
default=8,
help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
)
parser.add_argument(
"--language",
type=str,
default=None,
choices=whisper_langs,
help="Language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
"--device",
dest="device",
default="cuda" if torch.cuda.is_available() else "cpu",
help="if you have a GPU use 'cuda', otherwise 'cpu'",
)
args = parser.parse_args()
if args.stemming:
# Isolate vocals from the rest of the audio
return_code = os.system(
f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o "temp_outputs"'
)
if return_code != 0:
logging.warning(
"Source splitting failed, using original audio file. Use --no-stem argument to disable it."
)
vocal_target = args.audio
else:
vocal_target = os.path.join(
"temp_outputs",
"htdemucs",
os.path.splitext(os.path.basename(args.audio))[0],
"vocals.wav",
)
else:
vocal_target = args.audio
logging.info("Starting Nemo process with vocal_target: ", vocal_target)
nemo_process = subprocess.Popen(
["python3", "nemo_process.py", "-a", vocal_target, "--device", args.device],
)
# Transcribe the audio file
if args.batch_size != 0:
from transcription_helpers import transcribe_batched
whisper_results, language = transcribe_batched(
vocal_target,
args.language,
args.batch_size,
args.model_name,
mtypes[args.device],
args.suppress_numerals,
args.device,
)
else:
from transcription_helpers import transcribe
whisper_results, language = transcribe(
vocal_target,
args.language,
args.model_name,
mtypes[args.device],
args.suppress_numerals,
args.device,
)
if language in wav2vec2_langs:
alignment_model, metadata = whisperx.load_align_model(
language_code=language, device=args.device
)
result_aligned = whisperx.align(
whisper_results, alignment_model, metadata, vocal_target, args.device
)
word_timestamps = filter_missing_timestamps(
result_aligned["word_segments"],
initial_timestamp=whisper_results[0].get("start"),
final_timestamp=whisper_results[-1].get("end"),
)
# clear gpu vram
del alignment_model
torch.cuda.empty_cache()
else:
assert (
args.batch_size == 0 # TODO: add a better check for word timestamps existence
), (
f"Unsupported language: {language}, use --batch_size to 0"
" to generate word timestamps using whisper directly and fix this error."
)
word_timestamps = []
for segment in whisper_results:
for word in segment["words"]:
word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})
# Reading timestamps <> Speaker Labels mapping
nemo_process.communicate()
ROOT = os.getcwd()
temp_path = os.path.join(ROOT, "temp_outputs")
speaker_ts = []
with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
lines = f.readlines()
for line in lines:
line_list = line.split(" ")
s = int(float(line_list[5]) * 1000)
e = s + int(float(line_list[8]) * 1000)
speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])
wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
if language in punct_model_langs:
# restoring punctuation in the transcript to help realign the sentences
punct_model = PunctuationModel(model="kredor/punctuate-all")
words_list = list(map(lambda x: x["word"], wsm))
labled_words = punct_model.predict(words_list)
ending_puncts = ".?!"
model_puncts = ".,;:!?"
# We don't want to punctuate U.S.A. with a period. Right?
is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x)
for word_dict, labeled_tuple in zip(wsm, labled_words):
word = word_dict["word"]
if (
word
and labeled_tuple[1] in ending_puncts
and (word[-1] not in model_puncts or is_acronym(word))
):
word += labeled_tuple[1]
if word.endswith(".."):
word = word.rstrip(".")
word_dict["word"] = word
else:
logging.warning(
f"Punctuation restoration is not available for {language} language. Using the original punctuation."
)
wsm = get_realigned_ws_mapping_with_punctuation(wsm)
ssm = get_sentences_speaker_mapping(wsm, speaker_ts)
with open(f"{os.path.splitext(args.audio)[0]}.txt", "w", encoding="utf-8-sig") as f:
get_speaker_aware_transcript(ssm, f)
with open(f"{os.path.splitext(args.audio)[0]}.srt", "w", encoding="utf-8-sig") as srt:
write_srt(ssm, srt)
cleanup(temp_path)
|