File size: 9,124 Bytes
c71fb67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import time
from datasets import Dataset
import warnings
import argparse
import os
from helpers import *
from faster_whisper import WhisperModel
import whisperx
import torch
from pydub import AudioSegment
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
from deepmultilingualpunctuation import PunctuationModel
import re
import logging
import csv
import shutil
mtypes = {"cpu": "int8", "cuda": "float16"}
# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument(
"-a", "--audio", help="name of the target audio file", required=True
)
parser.add_argument(
"--no-stem",
action="store_false",
dest="stemming",
default=True,
help="Disables source separation."
"This helps with long files that don't contain a lot of music.",
)
parser.add_argument(
"--suppress_numerals",
action="store_true",
dest="suppress_numerals",
default=False,
help="Suppresses Numerical Digits."
"This helps the diarization accuracy but converts all digits into written text.",
)
parser.add_argument(
"--whisper-model",
dest="model_name",
default="medium.en",
help="name of the Whisper model to use",
)
parser.add_argument(
"--batch-size",
type=int,
dest="batch_size",
default=8,
help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
)
parser.add_argument(
"--language",
type=str,
default=None,
choices=whisper_langs,
help="Language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
"--device",
dest="device",
default="cuda" if torch.cuda.is_available() else "cpu",
help="if you have a GPU use 'cuda', otherwise 'cpu'",
)
args = parser.parse_args()
if args.stemming:
# Isolate vocals from the rest of the audio
return_code = os.system(
f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o "temp_outputs"'
)
if return_code != 0:
logging.warning(
"Source splitting failed, using original audio file. Use --no-stem argument to disable it."
)
vocal_target = args.audio
else:
vocal_target = os.path.join(
"temp_outputs",
"htdemucs",
os.path.splitext(os.path.basename(args.audio))[0],
"vocals.wav",
)
else:
vocal_target = args.audio
# Transcribe the audio file
if args.batch_size != 0:
from transcription_helpers import transcribe_batched
whisper_results, language = transcribe_batched(
vocal_target,
args.language,
args.batch_size,
args.model_name,
mtypes[args.device],
args.suppress_numerals,
args.device,
)
else:
from transcription_helpers import transcribe
whisper_results, language = transcribe(
vocal_target,
args.language,
args.model_name,
mtypes[args.device],
args.suppress_numerals,
args.device,
)
if language in wav2vec2_langs:
alignment_model, metadata = whisperx.load_align_model(
language_code=language, device=args.device
)
result_aligned = whisperx.align(
whisper_results, alignment_model, metadata, vocal_target, args.device
)
word_timestamps = filter_missing_timestamps(
result_aligned["word_segments"],
initial_timestamp=whisper_results[0].get("start"),
final_timestamp=whisper_results[-1].get("end"),
)
# clear gpu vram
del alignment_model
torch.cuda.empty_cache()
else:
assert (
args.batch_size == 0 # TODO: add a better check for word timestamps existence
), (
f"Unsupported language: {language}, use --batch_size to 0"
" to generate word timestamps using whisper directly and fix this error."
)
word_timestamps = []
for segment in whisper_results:
for word in segment["words"]:
word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})
# convert audio to mono for NeMo combatibility
sound = AudioSegment.from_file(vocal_target).set_channels(1)
ROOT = os.getcwd()
temp_path = os.path.join(ROOT, "temp_outputs")
os.makedirs(temp_path, exist_ok=True)
sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")
# Initialize NeMo MSDD diarization model
msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
msdd_model.diarize()
del msdd_model
torch.cuda.empty_cache()
# Reading timestamps <> Speaker Labels mapping
speaker_ts = []
with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
lines = f.readlines()
for line in lines:
line_list = line.split(" ")
s = int(float(line_list[5]) * 1000)
e = s + int(float(line_list[8]) * 1000)
speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])
wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
if language in punct_model_langs:
# restoring punctuation in the transcript to help realign the sentences
punct_model = PunctuationModel(model="kredor/punctuate-all")
words_list = list(map(lambda x: x["word"], wsm))
# Use the pipe method directly on the words_list
while True:
try:
labled_words = punct_model.pipe(words_list)
break
except ValueError as e:
if str(e) == "Queue is full! Please try again.":
print("Queue is full. Retrying in 1 second...")
time.sleep(1)
else:
raise e
ending_puncts = ".?!"
model_puncts = ".,;:!?"
# We don't want to punctuate U.S.A. with a period. Right?
is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x)
for i, labeled_tuple in enumerate(labled_words):
word = wsm[i]["word"]
if (
word
and labeled_tuple
and "entity" in labeled_tuple[0]
and labeled_tuple[0]["entity"] in ending_puncts
and (word[-1] not in model_puncts or is_acronym(word))
):
word += labeled_tuple[0]["entity"]
if word.endswith(".."):
word = word.rstrip(".")
wsm[i]["word"] = word
else:
logging.warning(
f"Punctuation restoration is not available for {language} language. Using the original punctuation."
)
wsm = get_realigned_ws_mapping_with_punctuation(wsm)
ssm = get_sentences_speaker_mapping(wsm, speaker_ts)
with open(f"{os.path.splitext(args.audio)[0]}.txt", "w", encoding="utf-8-sig") as f:
get_speaker_aware_transcript(ssm, f)
with open(f"{os.path.splitext(args.audio)[0]}.srt", "w", encoding="utf-8-sig") as srt_file:
write_srt(ssm, srt_file)
# Create the autodiarization directory structure
autodiarization_dir = "autodiarization"
os.makedirs(autodiarization_dir, exist_ok=True)
# Get the base name of the audio file
audio_base_name = os.path.splitext(os.path.basename(args.audio))[0]
# Determine the next available subdirectory number
subdirs = [int(d) for d in os.listdir(autodiarization_dir) if os.path.isdir(os.path.join(autodiarization_dir, d))]
next_subdir = str(max(subdirs) + 1) if subdirs else "0"
# Create the subdirectory for the current audio file
audio_subdir = os.path.join(autodiarization_dir, next_subdir)
os.makedirs(audio_subdir, exist_ok=True)
# Read the SRT file
with open(f"{os.path.splitext(args.audio)[0]}.srt", "r", encoding="utf-8-sig") as srt_file:
srt_data = srt_file.read()
# Parse the SRT data
srt_parser = srt.parse(srt_data)
# Split the audio file based on the SRT timestamps and create the LJSpeech dataset
speaker_dirs = {}
for index, subtitle in enumerate(srt_parser):
start_time = subtitle.start.total_seconds()
end_time = subtitle.end.total_seconds()
# Extract the speaker information from the TXT file
with open(f"{os.path.splitext(args.audio)[0]}.txt", "r", encoding="utf-8-sig") as txt_file:
for line in txt_file:
if f"{index+1}" in line:
speaker = line.split(":")[0].strip()
break
if speaker not in speaker_dirs:
speaker_dir = os.path.join(audio_subdir, speaker)
os.makedirs(speaker_dir, exist_ok=True)
speaker_dirs[speaker] = speaker_dir
# Extract the audio segment for the current subtitle
audio_segment = sound[start_time * 1000:end_time * 1000]
# Generate a unique filename for the audio segment
segment_filename = f"{speaker}_{len(os.listdir(speaker_dirs[speaker])) + 1:03d}.wav"
segment_path = os.path.join(speaker_dirs[speaker], segment_filename)
# Export the audio segment as a WAV file
audio_segment.export(segment_path, format="wav")
# Append the metadata to the CSV file
metadata_path = os.path.join(speaker_dirs[speaker], "metadata.csv")
with open(metadata_path, "a", newline="", encoding="utf-8-sig") as csvfile:
writer = csv.writer(csvfile, delimiter="|")
writer.writerow([os.path.splitext(segment_filename)[0], speaker, subtitle.content])
# Clean up temporary files
cleanup(temp_path)
|