File size: 9,124 Bytes
c71fb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import time
from datasets import Dataset
import warnings
import argparse
import os
from helpers import *
from faster_whisper import WhisperModel
import whisperx
import torch
from pydub import AudioSegment
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
from deepmultilingualpunctuation import PunctuationModel
import re
import logging
import csv
import shutil

mtypes = {"cpu": "int8", "cuda": "float16"}

# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument(
    "-a", "--audio", help="name of the target audio file", required=True
)
parser.add_argument(
    "--no-stem",
    action="store_false",
    dest="stemming",
    default=True,
    help="Disables source separation."
    "This helps with long files that don't contain a lot of music.",
)
parser.add_argument(
    "--suppress_numerals",
    action="store_true",
    dest="suppress_numerals",
    default=False,
    help="Suppresses Numerical Digits."
    "This helps the diarization accuracy but converts all digits into written text.",
)
parser.add_argument(
    "--whisper-model",
    dest="model_name",
    default="medium.en",
    help="name of the Whisper model to use",
)
parser.add_argument(
    "--batch-size",
    type=int,
    dest="batch_size",
    default=8,
    help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
)
parser.add_argument(
    "--language",
    type=str,
    default=None,
    choices=whisper_langs,
    help="Language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
    "--device",
    dest="device",
    default="cuda" if torch.cuda.is_available() else "cpu",
    help="if you have a GPU use 'cuda', otherwise 'cpu'",
)
args = parser.parse_args()

if args.stemming:
    # Isolate vocals from the rest of the audio
    return_code = os.system(
        f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o "temp_outputs"'
    )
    if return_code != 0:
        logging.warning(
            "Source splitting failed, using original audio file. Use --no-stem argument to disable it."
        )
        vocal_target = args.audio
    else:
        vocal_target = os.path.join(
            "temp_outputs",
            "htdemucs",
            os.path.splitext(os.path.basename(args.audio))[0],
            "vocals.wav",
        )
else:
    vocal_target = args.audio

# Transcribe the audio file
if args.batch_size != 0:
    from transcription_helpers import transcribe_batched
    whisper_results, language = transcribe_batched(
        vocal_target,
        args.language,
        args.batch_size,
        args.model_name,
        mtypes[args.device],
        args.suppress_numerals,
        args.device,
    )
else:
    from transcription_helpers import transcribe
    whisper_results, language = transcribe(
        vocal_target,
        args.language,
        args.model_name,
        mtypes[args.device],
        args.suppress_numerals,
        args.device,
    )

if language in wav2vec2_langs:
    alignment_model, metadata = whisperx.load_align_model(
        language_code=language, device=args.device
    )
    result_aligned = whisperx.align(
        whisper_results, alignment_model, metadata, vocal_target, args.device
    )
    word_timestamps = filter_missing_timestamps(
        result_aligned["word_segments"],
        initial_timestamp=whisper_results[0].get("start"),
        final_timestamp=whisper_results[-1].get("end"),
    )
    # clear gpu vram
    del alignment_model
    torch.cuda.empty_cache()
else:
    assert (
        args.batch_size == 0  # TODO: add a better check for word timestamps existence
    ), (
        f"Unsupported language: {language}, use --batch_size to 0"
        " to generate word timestamps using whisper directly and fix this error."
    )
    word_timestamps = []
    for segment in whisper_results:
        for word in segment["words"]:
            word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})

# convert audio to mono for NeMo combatibility
sound = AudioSegment.from_file(vocal_target).set_channels(1)
ROOT = os.getcwd()
temp_path = os.path.join(ROOT, "temp_outputs")
os.makedirs(temp_path, exist_ok=True)
sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")

# Initialize NeMo MSDD diarization model
msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
msdd_model.diarize()
del msdd_model
torch.cuda.empty_cache()

# Reading timestamps <> Speaker Labels mapping
speaker_ts = []
with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
    lines = f.readlines()
    for line in lines:
        line_list = line.split(" ")
        s = int(float(line_list[5]) * 1000)
        e = s + int(float(line_list[8]) * 1000)
        speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])

wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")

if language in punct_model_langs:
    # restoring punctuation in the transcript to help realign the sentences
    punct_model = PunctuationModel(model="kredor/punctuate-all")
    words_list = list(map(lambda x: x["word"], wsm))
    
    # Use the pipe method directly on the words_list
    while True:
        try:
            labled_words = punct_model.pipe(words_list)
            break
        except ValueError as e:
            if str(e) == "Queue is full! Please try again.":
                print("Queue is full. Retrying in 1 second...")
                time.sleep(1)
            else:
                raise e
    
    ending_puncts = ".?!"
    model_puncts = ".,;:!?"
    # We don't want to punctuate U.S.A. with a period. Right?
    is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x)
    for i, labeled_tuple in enumerate(labled_words):
        word = wsm[i]["word"]
        if (
            word
            and labeled_tuple
            and "entity" in labeled_tuple[0]
            and labeled_tuple[0]["entity"] in ending_puncts
            and (word[-1] not in model_puncts or is_acronym(word))
        ):
            word += labeled_tuple[0]["entity"]
            if word.endswith(".."):
                word = word.rstrip(".")
            wsm[i]["word"] = word
else:
    logging.warning(
        f"Punctuation restoration is not available for {language} language. Using the original punctuation."
    )

wsm = get_realigned_ws_mapping_with_punctuation(wsm)
ssm = get_sentences_speaker_mapping(wsm, speaker_ts)


with open(f"{os.path.splitext(args.audio)[0]}.txt", "w", encoding="utf-8-sig") as f:
    get_speaker_aware_transcript(ssm, f)
with open(f"{os.path.splitext(args.audio)[0]}.srt", "w", encoding="utf-8-sig") as srt_file:
    write_srt(ssm, srt_file)

# Create the autodiarization directory structure
autodiarization_dir = "autodiarization"
os.makedirs(autodiarization_dir, exist_ok=True)

# Get the base name of the audio file
audio_base_name = os.path.splitext(os.path.basename(args.audio))[0]

# Determine the next available subdirectory number
subdirs = [int(d) for d in os.listdir(autodiarization_dir) if os.path.isdir(os.path.join(autodiarization_dir, d))]
next_subdir = str(max(subdirs) + 1) if subdirs else "0"

# Create the subdirectory for the current audio file
audio_subdir = os.path.join(autodiarization_dir, next_subdir)
os.makedirs(audio_subdir, exist_ok=True)

# Read the SRT file
with open(f"{os.path.splitext(args.audio)[0]}.srt", "r", encoding="utf-8-sig") as srt_file:
    srt_data = srt_file.read()

# Parse the SRT data
srt_parser = srt.parse(srt_data)

# Split the audio file based on the SRT timestamps and create the LJSpeech dataset
speaker_dirs = {}
for index, subtitle in enumerate(srt_parser):
    start_time = subtitle.start.total_seconds()
    end_time = subtitle.end.total_seconds()
    
    # Extract the speaker information from the TXT file
    with open(f"{os.path.splitext(args.audio)[0]}.txt", "r", encoding="utf-8-sig") as txt_file:
        for line in txt_file:
            if f"{index+1}" in line:
                speaker = line.split(":")[0].strip()
                break
    
    if speaker not in speaker_dirs:
        speaker_dir = os.path.join(audio_subdir, speaker)
        os.makedirs(speaker_dir, exist_ok=True)
        speaker_dirs[speaker] = speaker_dir
    
    # Extract the audio segment for the current subtitle
    audio_segment = sound[start_time * 1000:end_time * 1000]
    
    # Generate a unique filename for the audio segment
    segment_filename = f"{speaker}_{len(os.listdir(speaker_dirs[speaker])) + 1:03d}.wav"
    segment_path = os.path.join(speaker_dirs[speaker], segment_filename)
    
    # Export the audio segment as a WAV file
    audio_segment.export(segment_path, format="wav")
    
    # Append the metadata to the CSV file
    metadata_path = os.path.join(speaker_dirs[speaker], "metadata.csv")
    with open(metadata_path, "a", newline="", encoding="utf-8-sig") as csvfile:
        writer = csv.writer(csvfile, delimiter="|")
        writer.writerow([os.path.splitext(segment_filename)[0], speaker, subtitle.content])

# Clean up temporary files
cleanup(temp_path)