diarizefix / bulktranscript.py
Alignment-Lab-AI's picture
Upload folder using huggingface_hub
c71fb67 verified
import argparse
import os
from helpers import *
from faster_whisper import WhisperModel
import whisperx
import torch
from pydub import AudioSegment
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
from deepmultilingualpunctuation import PunctuationModel
import re
import logging
import shutil
mtypes = {"cpu": "int8", "cuda": "float16"}
# Initialize parser
parser = argparse.ArgumentParser()
parser.add_argument(
"-d", "--directory", help="path to the directory containing the target files", required=True
)
parser.add_argument(
"--no-stem",
action="store_false",
dest="stemming",
default=True,
help="Disables source separation."
"This helps with long files that don't contain a lot of music.",
)
parser.add_argument(
"--suppress_numerals",
action="store_true",
dest="suppress_numerals",
default=False,
help="Suppresses Numerical Digits."
"This helps the diarization accuracy but converts all digits into written text.",
)
parser.add_argument(
"--whisper-model",
dest="model_name",
default="medium.en",
help="name of the Whisper model to use",
)
parser.add_argument(
"--batch-size",
type=int,
dest="batch_size",
default=8,
help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
)
parser.add_argument(
"--language",
type=str,
default=None,
choices=whisper_langs,
help="Language spoken in the audio, specify None to perform language detection",
)
parser.add_argument(
"--device",
dest="device",
default="cuda" if torch.cuda.is_available() else "cpu",
help="if you have a GPU use 'cuda', otherwise 'cpu'",
)
args = parser.parse_args()
def process_file(audio_file, output_dir):
if args.stemming:
# Isolate vocals from the rest of the audio
return_code = os.system(
f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{audio_file}" -o "temp_outputs"'
)
if return_code != 0:
logging.warning(
"Source splitting failed, using original audio file. Use --no-stem argument to disable it."
)
vocal_target = audio_file
else:
vocal_target = os.path.join(
"temp_outputs",
"htdemucs",
os.path.splitext(os.path.basename(audio_file))[0],
"vocals.wav",
)
else:
vocal_target = audio_file
# Transcribe the audio file
if args.batch_size != 0:
from transcription_helpers import transcribe_batched
whisper_results, language = transcribe_batched(
vocal_target,
args.language,
args.batch_size,
args.model_name,
mtypes[args.device],
args.suppress_numerals,
args.device,
)
else:
from transcription_helpers import transcribe
whisper_results, language = transcribe(
vocal_target,
args.language,
args.model_name,
mtypes[args.device],
args.suppress_numerals,
args.device,
)
if language in wav2vec2_langs:
alignment_model, metadata = whisperx.load_align_model(
language_code=language, device=args.device
)
result_aligned = whisperx.align(
whisper_results, alignment_model, metadata, vocal_target, args.device
)
word_timestamps = filter_missing_timestamps(
result_aligned["word_segments"],
initial_timestamp=whisper_results[0].get("start"),
final_timestamp=whisper_results[-1].get("end"),
)
# clear gpu vram
del alignment_model
torch.cuda.empty_cache()
else:
assert (
args.batch_size == 0 # TODO: add a better check for word timestamps existence
), (
f"Unsupported language: {language}, use --batch_size to 0"
" to generate word timestamps using whisper directly and fix this error."
)
word_timestamps = []
for segment in whisper_results:
for word in segment["words"]:
word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})
# convert audio to mono for NeMo compatibility
sound = AudioSegment.from_file(vocal_target).set_channels(1)
temp_path = os.path.join(output_dir, "temp_outputs")
os.makedirs(temp_path, exist_ok=True)
sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")
# Initialize NeMo MSDD diarization model
msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
msdd_model.diarize()
del msdd_model
torch.cuda.empty_cache()
# Reading timestamps <> Speaker Labels mapping
speaker_ts = []
with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
lines = f.readlines()
for line in lines:
line_list = line.split(" ")
s = int(float(line_list[5]) * 1000)
e = s + int(float(line_list[8]) * 1000)
speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])
wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
if language in punct_model_langs:
# restoring punctuation in the transcript to help realign the sentences
punct_model = PunctuationModel(model="kredor/punctuate-all")
words_list = list(map(lambda x: x["word"], wsm))
labled_words = punct_model.predict(words_list)
ending_puncts = ".?!"
model_puncts = ".,;:!?"
# We don't want to punctuate U.S.A. with a period. Right?
is_acronym = lambda x: re.fullmatch(r"\b(?:[a-zA-Z]\.){2,}", x)
for word_dict, labeled_tuple in zip(wsm, labled_words):
word = word_dict["word"]
if (
word
and labeled_tuple[1] in ending_puncts
and (word[-1] not in model_puncts or is_acronym(word))
):
word += labeled_tuple[1]
if word.endswith(".."):
word = word.rstrip(".")
word_dict["word"] = word
else:
logging.warning(
f"Punctuation restoration is not available for {language} language. Using the original punctuation."
)
wsm = get_realigned_ws_mapping_with_punctuation(wsm)
ssm = get_sentences_speaker_mapping(wsm, speaker_ts)
with open(os.path.join(output_dir, f"{os.path.splitext(os.path.basename(audio_file))[0]}.txt"), "w", encoding="utf-8-sig") as f:
get_speaker_aware_transcript(ssm, f)
with open(os.path.join(output_dir, f"{os.path.splitext(os.path.basename(audio_file))[0]}.srt"), "w", encoding="utf-8-sig") as srt:
write_srt(ssm, srt)
cleanup(temp_path)
# Set the target directory containing the .avi files
target_dir = args.directory
# Create the "done" directory in the same location as the script
script_dir = os.path.dirname(os.path.abspath(__file__))
done_dir = os.path.join(script_dir, "done")
# Iterate over the subfolders in the target directory
for root, dirs, files in os.walk(target_dir):
for file in files:
if file.endswith(".avi"):
avi_file = os.path.join(root, file)
wav_file = os.path.splitext(avi_file)[0] + ".wav"
# Extract the audio from the .avi file
os.system(f'ffmpeg -i "{avi_file}" -vn -acodec pcm_s16le -ar 16000 -ac 1 "{wav_file}"')
# Create the mirrored subfolder structure in the "done" directory
subfolder = os.path.relpath(root, target_dir)
output_dir = os.path.join(done_dir, subfolder)
os.makedirs(output_dir, exist_ok=True)
# Process the extracted .wav file
process_file(wav_file, output_dir)
# Remove the extracted .wav file
os.remove(wav_file)