Alignment-Lab-AI commited on
Commit
9c57e3a
·
verified ·
1 Parent(s): a9c9b08

Update test3.py

Browse files
Files changed (1) hide show
  1. test3.py +210 -191
test3.py CHANGED
@@ -1,5 +1,6 @@
1
  import argparse
2
  import os
 
3
  from helpers import *
4
  from faster_whisper import WhisperModel
5
  import whisperx
@@ -9,206 +10,224 @@ from nemo.collections.asr.models.msdd_models import NeuralDiarizer
9
  import logging
10
  import shutil
11
  import srt
 
 
12
 
13
  mtypes = {"cpu": "int8", "cuda": "float16"}
14
 
15
- # Initialize parser
16
- parser = argparse.ArgumentParser()
17
- parser.add_argument(
18
- "-a", "--audio", help="name of the target audio file", required=True
19
- )
20
- parser.add_argument(
21
- "--no-stem",
22
- action="store_false",
23
- dest="stemming",
24
- default=True,
25
- help="Disables source separation. This helps with long files that don't contain a lot of music.",
26
- )
27
- parser.add_argument(
28
- "--suppress_numerals",
29
- action="store_true",
30
- dest="suppress_numerals",
31
- default=False,
32
- help="Suppresses Numerical Digits. This helps the diarization accuracy but converts all digits into written text.",
33
- )
34
- parser.add_argument(
35
- "--whisper-model",
36
- dest="model_name",
37
- default="medium.en",
38
- help="name of the Whisper model to use",
39
- )
40
- parser.add_argument(
41
- "--batch-size",
42
- type=int,
43
- dest="batch_size",
44
- default=8,
45
- help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
46
- )
47
- parser.add_argument(
48
- "--language",
49
- type=str,
50
- default=None,
51
- choices=whisper_langs,
52
- help="Language spoken in the audio, specify None to perform language detection",
53
- )
54
- parser.add_argument(
55
- "--device",
56
- dest="device",
57
- default="cuda" if torch.cuda.is_available() else "cpu",
58
- help="if you have a GPU use 'cuda', otherwise 'cpu'",
59
- )
60
- args = parser.parse_args()
61
-
62
- if args.stemming:
63
- # Isolate vocals from the rest of the audio
64
- return_code = os.system(
65
- f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{args.audio}" -o "temp_outputs"'
66
- )
67
- if return_code != 0:
68
- logging.warning(
69
- "Source splitting failed, using original audio file. Use --no-stem argument to disable it."
70
  )
71
- vocal_target = args.audio
72
  else:
73
- vocal_target = os.path.join(
74
- "temp_outputs",
75
- "htdemucs",
76
- os.path.splitext(os.path.basename(args.audio))[0],
77
- "vocals.wav",
 
 
 
 
 
 
 
 
 
 
 
 
78
  )
79
- else:
80
- vocal_target = args.audio
81
-
82
- # Transcribe the audio file
83
- if args.batch_size != 0:
84
- from transcription_helpers import transcribe_batched
85
- whisper_results, language = transcribe_batched(
86
- vocal_target,
87
- args.language,
88
- args.batch_size,
89
- args.model_name,
90
- mtypes[args.device],
91
- args.suppress_numerals,
92
- args.device,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  )
94
- else:
95
- from transcription_helpers import transcribe
96
- whisper_results, language = transcribe(
97
- vocal_target,
98
- args.language,
99
- args.model_name,
100
- mtypes[args.device],
101
- args.suppress_numerals,
102
- args.device,
103
  )
104
-
105
- if language in wav2vec2_langs:
106
- alignment_model, metadata = whisperx.load_align_model(
107
- language_code=language, device=args.device
 
 
108
  )
109
- result_aligned = whisperx.align(
110
- whisper_results, alignment_model, metadata, vocal_target, args.device
 
 
 
111
  )
112
- word_timestamps = filter_missing_timestamps(
113
- result_aligned["word_segments"],
114
- initial_timestamp=whisper_results[0].get("start"),
115
- final_timestamp=whisper_results[-1].get("end"),
 
 
116
  )
117
- # clear gpu vram
118
- del alignment_model
119
- torch.cuda.empty_cache()
120
- else:
121
- assert (
122
- args.batch_size == 0 # TODO: add a better check for word timestamps existence
123
- ), (
124
- f"Unsupported language: {language}, use --batch_size to 0"
125
- " to generate word timestamps using whisper directly and fix this error."
126
  )
127
- word_timestamps = []
128
- for segment in whisper_results:
129
- for word in segment["words"]:
130
- word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})
131
-
132
-
133
- # convert audio to mono for NeMo compatibility
134
- sound = AudioSegment.from_file(vocal_target).set_channels(1)
135
- ROOT = os.getcwd()
136
- temp_path = os.path.join(ROOT, "temp_outputs")
137
- os.makedirs(temp_path, exist_ok=True)
138
- sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")
139
-
140
- # Initialize NeMo MSDD diarization model
141
- msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
142
- msdd_model.diarize()
143
- del msdd_model
144
- torch.cuda.empty_cache()
145
-
146
- # Reading timestamps <> Speaker Labels mapping
147
- speaker_ts = []
148
- with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
149
- lines = f.readlines()
150
- for line in lines:
151
- line_list = line.split(" ")
152
- s = int(float(line_list[5]) * 1000)
153
- e = s + int(float(line_list[8]) * 1000)
154
- speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])
155
-
156
- wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
157
- wsm = get_realigned_ws_mapping_with_punctuation(wsm)
158
- ssm = get_sentences_speaker_mapping(wsm, speaker_ts)
159
-
160
- # Create the autodiarization directory structure
161
- autodiarization_dir = "autodiarization"
162
- os.makedirs(autodiarization_dir, exist_ok=True)
163
-
164
- # Get the base name of the audio file
165
- base_name = os.path.splitext(os.path.basename(args.audio))[0]
166
-
167
- # Create a subdirectory for the current audio file
168
- audio_dir = os.path.join(autodiarization_dir, base_name)
169
- os.makedirs(audio_dir, exist_ok=True)
170
-
171
- # Create a dictionary to store speaker-specific metadata
172
- speaker_metadata = {}
173
-
174
- # Generate the SRT file
175
- srt_file = f"{os.path.splitext(args.audio)[0]}.srt"
176
- with open(srt_file, "w", encoding="utf-8") as f:
177
- write_srt(ssm, f)
178
-
179
- # Read the generated SRT file
180
- with open(srt_file, "r", encoding="utf-8") as f:
181
- srt_data = f.read()
182
-
183
- # Parse the SRT data
184
- srt_segments = list(srt.parse(srt_data))
185
-
186
- # Process each segment in the SRT data
187
- for segment in srt_segments:
188
- start_time = segment.start.total_seconds() * 1000
189
- end_time = segment.end.total_seconds() * 1000
190
- speaker_name, transcript = segment.content.split(": ", 1)
191
-
192
- # Extract the speaker ID from the speaker name
193
- speaker_id = int(speaker_name.split(" ")[-1])
194
-
195
- # Split the audio segment
196
- segment_audio = sound[start_time:end_time]
197
- segment_path = os.path.join(audio_dir, f"speaker_{speaker_id}", f"speaker_{speaker_id}_{segment.index:03d}.wav")
198
- os.makedirs(os.path.dirname(segment_path), exist_ok=True)
199
- segment_audio.export(segment_path, format="wav")
200
-
201
- # Store the metadata for each speaker
202
- if speaker_name not in speaker_metadata:
203
- speaker_metadata[speaker_name] = []
204
- speaker_metadata[speaker_name].append(f"speaker_{speaker_id}_{segment.index:03d}|{speaker_name}|{transcript}")
205
-
206
- # Write the metadata.csv file for each speaker
207
- for speaker_name, metadata in speaker_metadata.items():
208
- speaker_id = int(speaker_name.split(" ")[-1])
209
- speaker_dir = os.path.join(audio_dir, f"speaker_{speaker_id}")
210
- with open(os.path.join(speaker_dir, "metadata.csv"), "w", encoding="utf-8") as f:
211
- f.write("\n".join(metadata))
212
-
213
- # Clean up temporary files
214
- cleanup(temp_path)
 
1
  import argparse
2
  import os
3
+ import glob
4
  from helpers import *
5
  from faster_whisper import WhisperModel
6
  import whisperx
 
10
  import logging
11
  import shutil
12
  import srt
13
+ from tqdm import tqdm
14
+ import concurrent.futures
15
 
16
  mtypes = {"cpu": "int8", "cuda": "float16"}
17
 
18
+ def setup_logging():
19
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
20
+
21
+ def process_audio_file(audio_file, args):
22
+ logging.info(f"Processing file: {audio_file}")
23
+
24
+ if args.stemming:
25
+ # Isolate vocals from the rest of the audio
26
+ logging.info("Performing source separation...")
27
+ return_code = os.system(
28
+ f'python3 -m demucs.separate -n htdemucs --two-stems=vocals "{audio_file}" -o "temp_outputs"'
29
+ )
30
+ if return_code != 0:
31
+ logging.warning("Source splitting failed, using original audio file.")
32
+ vocal_target = audio_file
33
+ else:
34
+ vocal_target = os.path.join(
35
+ "temp_outputs",
36
+ "htdemucs",
37
+ os.path.splitext(os.path.basename(audio_file))[0],
38
+ "vocals.wav",
39
+ )
40
+ else:
41
+ vocal_target = audio_file
42
+
43
+ # Transcribe the audio file
44
+ logging.info("Transcribing audio...")
45
+ if args.batch_size != 0:
46
+ from transcription_helpers import transcribe_batched
47
+ whisper_results, language = transcribe_batched(
48
+ vocal_target,
49
+ args.language,
50
+ args.batch_size,
51
+ args.model_name,
52
+ mtypes[args.device],
53
+ args.suppress_numerals,
54
+ args.device,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  )
 
56
  else:
57
+ from transcription_helpers import transcribe
58
+ whisper_results, language = transcribe(
59
+ vocal_target,
60
+ args.language,
61
+ args.model_name,
62
+ mtypes[args.device],
63
+ args.suppress_numerals,
64
+ args.device,
65
+ )
66
+
67
+ logging.info("Aligning transcription...")
68
+ if language in wav2vec2_langs:
69
+ alignment_model, metadata = whisperx.load_align_model(
70
+ language_code=language, device=args.device
71
+ )
72
+ result_aligned = whisperx.align(
73
+ whisper_results, alignment_model, metadata, vocal_target, args.device
74
  )
75
+ word_timestamps = filter_missing_timestamps(
76
+ result_aligned["word_segments"],
77
+ initial_timestamp=whisper_results[0].get("start"),
78
+ final_timestamp=whisper_results[-1].get("end"),
79
+ )
80
+ del alignment_model
81
+ torch.cuda.empty_cache()
82
+ else:
83
+ word_timestamps = []
84
+ for segment in whisper_results:
85
+ for word in segment["words"]:
86
+ word_timestamps.append({"word": word[2], "start": word[0], "end": word[1]})
87
+
88
+ # Convert audio to mono for NeMo compatibility
89
+ logging.info("Converting audio to mono...")
90
+ sound = AudioSegment.from_file(vocal_target).set_channels(1)
91
+ ROOT = os.getcwd()
92
+ temp_path = os.path.join(ROOT, "temp_outputs")
93
+ os.makedirs(temp_path, exist_ok=True)
94
+ sound.export(os.path.join(temp_path, "mono_file.wav"), format="wav")
95
+
96
+ # Initialize NeMo MSDD diarization model
97
+ logging.info("Performing diarization...")
98
+ msdd_model = NeuralDiarizer(cfg=create_config(temp_path)).to(args.device)
99
+ msdd_model.diarize()
100
+ del msdd_model
101
+ torch.cuda.empty_cache()
102
+
103
+ # Reading timestamps <> Speaker Labels mapping
104
+ speaker_ts = []
105
+ with open(os.path.join(temp_path, "pred_rttms", "mono_file.rttm"), "r") as f:
106
+ lines = f.readlines()
107
+ for line in lines:
108
+ line_list = line.split(" ")
109
+ s = int(float(line_list[5]) * 1000)
110
+ e = s + int(float(line_list[8]) * 1000)
111
+ speaker_ts.append([s, e, int(line_list[11].split("_")[-1])])
112
+
113
+ wsm = get_words_speaker_mapping(word_timestamps, speaker_ts, "start")
114
+ wsm = get_realigned_ws_mapping_with_punctuation(wsm)
115
+ ssm = get_sentences_speaker_mapping(wsm, speaker_ts)
116
+
117
+ # Create the autodiarization directory structure
118
+ autodiarization_dir = "autodiarization"
119
+ os.makedirs(autodiarization_dir, exist_ok=True)
120
+
121
+ # Get the base name of the audio file
122
+ base_name = os.path.splitext(os.path.basename(audio_file))[0]
123
+
124
+ # Create a subdirectory for the current audio file
125
+ audio_dir = os.path.join(autodiarization_dir, base_name)
126
+ os.makedirs(audio_dir, exist_ok=True)
127
+
128
+ # Create a dictionary to store speaker-specific metadata
129
+ speaker_metadata = {}
130
+
131
+ # Generate the SRT file
132
+ srt_file = f"{os.path.splitext(audio_file)[0]}.srt"
133
+ with open(srt_file, "w", encoding="utf-8") as f:
134
+ write_srt(ssm, f)
135
+
136
+ # Read the generated SRT file
137
+ with open(srt_file, "r", encoding="utf-8") as f:
138
+ srt_data = f.read()
139
+
140
+ # Parse the SRT data
141
+ srt_segments = list(srt.parse(srt_data))
142
+
143
+ # Process each segment in the SRT data
144
+ logging.info("Processing audio segments...")
145
+ for segment in tqdm(srt_segments, desc="Processing segments"):
146
+ start_time = segment.start.total_seconds() * 1000
147
+ end_time = segment.end.total_seconds() * 1000
148
+ speaker_name, transcript = segment.content.split(": ", 1)
149
+
150
+ # Extract the speaker ID from the speaker name
151
+ speaker_id = int(speaker_name.split(" ")[-1])
152
+
153
+ # Split the audio segment
154
+ segment_audio = sound[start_time:end_time]
155
+ segment_path = os.path.join(audio_dir, f"speaker_{speaker_id}", f"speaker_{speaker_id}_{segment.index:03d}.wav")
156
+ os.makedirs(os.path.dirname(segment_path), exist_ok=True)
157
+ segment_audio.export(segment_path, format="wav")
158
+
159
+ # Store the metadata for each speaker
160
+ if speaker_name not in speaker_metadata:
161
+ speaker_metadata[speaker_name] = []
162
+ speaker_metadata[speaker_name].append(f"speaker_{speaker_id}_{segment.index:03d}|{speaker_name}|{transcript}")
163
+
164
+ # Write the metadata.csv file for each speaker
165
+ for speaker_name, metadata in speaker_metadata.items():
166
+ speaker_id = int(speaker_name.split(" ")[-1])
167
+ speaker_dir = os.path.join(audio_dir, f"speaker_{speaker_id}")
168
+ with open(os.path.join(speaker_dir, "metadata.csv"), "w", encoding="utf-8") as f:
169
+ f.write("\n".join(metadata))
170
+
171
+ # Clean up temporary files
172
+ cleanup(temp_path)
173
+ logging.info(f"Finished processing {audio_file}")
174
+
175
+ def main():
176
+ setup_logging()
177
+
178
+ parser = argparse.ArgumentParser()
179
+ parser.add_argument(
180
+ "-a", "--audio", help="name of the target audio file or directory", required=True
181
  )
182
+ parser.add_argument(
183
+ "--no-stem",
184
+ action="store_false",
185
+ dest="stemming",
186
+ default=True,
187
+ help="Disables source separation. This helps with long files that don't contain a lot of music.",
 
 
 
188
  )
189
+ parser.add_argument(
190
+ "--suppress_numerals",
191
+ action="store_true",
192
+ dest="suppress_numerals",
193
+ default=False,
194
+ help="Suppresses Numerical Digits. This helps the diarization accuracy but converts all digits into written text.",
195
  )
196
+ parser.add_argument(
197
+ "--whisper-model",
198
+ dest="model_name",
199
+ default="medium.en",
200
+ help="name of the Whisper model to use",
201
  )
202
+ parser.add_argument(
203
+ "--batch-size",
204
+ type=int,
205
+ dest="batch_size",
206
+ default=8,
207
+ help="Batch size for batched inference, reduce if you run out of memory, set to 0 for non-batched inference",
208
  )
209
+ parser.add_argument(
210
+ "--language",
211
+ type=str,
212
+ default=None,
213
+ choices=whisper_langs,
214
+ help="Language spoken in the audio, specify None to perform language detection",
 
 
 
215
  )
216
+ parser.add_argument(
217
+ "--device",
218
+ dest="device",
219
+ default="cuda" if torch.cuda.is_available() else "cpu",
220
+ help="if you have a GPU use 'cuda', otherwise 'cpu'",
221
+ )
222
+ args = parser.parse_args()
223
+
224
+ if os.path.isdir(args.audio):
225
+ audio_files = glob.glob(os.path.join(args.audio, "*.wav")) + glob.glob(os.path.join(args.audio, "*.mp3"))
226
+ logging.info(f"Found {len(audio_files)} audio files in the directory.")
227
+ with concurrent.futures.ThreadPoolExecutor() as executor:
228
+ list(tqdm(executor.map(lambda f: process_audio_file(f, args), audio_files), total=len(audio_files), desc="Processing files"))
229
+ else:
230
+ process_audio_file(args.audio, args)
231
+
232
+ if __name__ == "__main__":
233
+ main()