import os import numpy as np import librosa import soundfile as sf from pydub import AudioSegment from pydub.silence import split_on_silence from pydub.playback import play from tqdm import tqdm def clean_audio(audio_path, output_path, selected_chunks, min_silence_len=1000, silence_thresh=-40, keep_silence=100): # Load the audio file audio_segment = AudioSegment.from_file(audio_path) # Convert to mono audio_segment = audio_segment.set_channels(1) # Normalize the audio audio_segment = normalize_audio(audio_segment) # Split on silence chunks = split_on_silence( audio_segment, min_silence_len=min_silence_len, silence_thresh=silence_thresh, keep_silence=keep_silence, ) # Find the main speaker based on total duration main_speaker_chunk = max(chunks, key=lambda chunk: len(chunk)) # Apply EQ and compression main_speaker_chunk = apply_eq_and_compression(main_speaker_chunk) # Export the main speaker's audio main_speaker_chunk.export(output_path, format="wav") def normalize_audio(audio_segment): """ Normalizes the audio to a target volume. """ target_dBFS = -20 change_in_dBFS = target_dBFS - audio_segment.dBFS return audio_segment.apply_gain(change_in_dBFS) def apply_eq_and_compression(audio_segment): """ Applies equalization and compression to the audio. """ # Apply EQ audio_segment = audio_segment.high_pass_filter(80) audio_segment = audio_segment.low_pass_filter(12000) # Apply compression threshold = -20 ratio = 2 attack = 10 release = 100 audio_segment = audio_segment.compress_dynamic_range( threshold=threshold, ratio=ratio, attack=attack, release=release, ) return audio_segment def process_file(wav_file, srt_file, cleaned_folder): print(f"Processing file: {wav_file}") # Create the cleaned folder if it doesn't exist os.makedirs(cleaned_folder, exist_ok=True) input_wav_path = wav_file output_wav_path = os.path.join(cleaned_folder, os.path.basename(wav_file)) # Review and select desired SRT chunks selected_chunks = review_srt_chunks(input_wav_path, srt_file) # Clean the audio based on selected chunks clean_audio(input_wav_path, output_wav_path, selected_chunks) print(f"Cleaned audio saved to: {output_wav_path}") def review_srt_chunks(audio_path, srt_path): audio_segment = AudioSegment.from_wav(audio_path) selected_chunks = [] with open(srt_path, "r") as srt_file: srt_content = srt_file.read() srt_entries = srt_content.strip().split("\n\n") for entry in tqdm(srt_entries, desc="Reviewing SRT chunks", unit="chunk"): lines = entry.strip().split("\n") if len(lines) >= 3: start_time, end_time = lines[1].split(" --> ") start_time = convert_to_milliseconds(start_time) end_time = convert_to_milliseconds(end_time) chunk = audio_segment[start_time:end_time] print("Playing chunk...") play(chunk) choice = input("Keep this chunk? (y/n): ") if choice.lower() == "y": selected_chunks.append((start_time, end_time)) print("Chunk selected.") else: print("Chunk skipped.") return selected_chunks def convert_to_milliseconds(time_str): time_str = time_str.replace(",", ".") hours, minutes, seconds = time_str.strip().split(":") milliseconds = (int(hours) * 3600 + int(minutes) * 60 + float(seconds)) * 1000 return int(milliseconds) # Set the WAV file, SRT file, and cleaned folder paths wav_file = "/path/to/your/audio.wav" srt_file = "/path/to/your/subtitles.srt" cleaned_folder = "/path/to/cleaned/folder" # Process the WAV file process_file(wav_file, srt_file, cleaned_folder) print("Processing completed.")